Article

MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma.

Departments of Pathology and Radiation-Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit-0097, Houston, TX 77030, USA.
Neuro-Oncology (Impact Factor: 6.18). 02/2010; 12(2):116-21. DOI: 10.1093/neuonc/nop020
Source: PubMed

ABSTRACT Hypermethylation of the O(6)-methylguanine-DNA-methyltransferase (MGMT) gene has been shown to be associated with improved outcome in glioblastoma (GBM) and may be a predictive marker of sensitivity to alkylating agents. However, the predictive utility of this marker has not been rigorously tested with regard to sensitivity to other therapies, namely radiation. To address this issue, we assessed MGMT methylation status in a cohort of patients with GBM who underwent radiation treatment but did not receive chemotherapy as a component of adjuvant treatment. Formalin-fixed, paraffin-embedded tumor samples from 225 patients with newly diagnosed GBM were analyzed via methylation-specific, quantitative real-time polymerase chain reaction following bisulfite treatment on isolated DNA to assess MGMT promoter methylation status. In patients who received radiotherapy alone following resection, methylation of the MGMT promoter correlated with an improved response to radiotherapy. Unmethylated tumors were twice as likely to progress during radiation treatment. The median time interval between resection and tumor progression of unmethylated tumors was also nearly half that of methylated tumors. Promoter methylation was also found to confer improved overall survival in patients who did not receive adjuvant alkylating chemotherapy. Multivariable analysis demonstrated that methylation status was independent of age, Karnofsky performance score, and extent of resection as a predictor of time to progression and overall survival. Our data suggest that MGMT promoter methylation appears to be a predictive biomarker of radiation response. Since this biomarker has also been shown to predict response to alkylating agents, perhaps MGMT promoter methylation represents a general, favorable prognostic factor in GBM.

0 Bookmarks
 · 
104 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: LC-MS/MS phospho-proteomics is an essential technology to help unravel the complex molecular events that lead to and propagate cancer. We have developed a global phospho-proteomic workflow to determine activity of signaling pathways and drug targets in pancreatic cancer tissue for clinical application. Peptides resulting from tryptic digestion of proteins extracted from frozen tissue of pancreatic ductal adenocarcinoma and background pancreas (n = 12), were labelled with tandem mass tags (TMT 8-plex), separated by strong cation exchange chromatography, then were analysed by LC-MS/MS directly or first enriched for phosphopeptides using IMAC and TiO2, prior to analysis. In-house, commercial and freeware bioinformatic platforms were used to identify relevant biological events from the complex dataset. Of 2,101 proteins identified, 152 demonstrated significant difference in abundance between tumor and non-tumor tissue. They included proteins that are known to be up-regulated in pancreatic cancer (e.g. Mucin-1), but the majority were new candidate markers such as HIPK1 & MLCK. Of the 6,543 unique phosphopeptides identified (6,284 unique phosphorylation sites), 635 showed significant regulation, particularly those from proteins involved in cell migration (Rho guanine nucleotide exchange factors & MRCKα) and formation of focal adhesions. Activator phosphorylation sites on FYN, AKT1, ERK2, HDAC1 and other drug targets were found to be highly modulated (≥2 fold) in different cases highlighting their predictive power. Here we provided critical information enabling us to identify the common and unique molecular events likely contributing to cancer in each case. Such information may be used to help predict more bespoke therapy suitable for an individual case.
    PLoS ONE 01/2014; 9(3):e90948. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The prognosis of high-grade glioma patients is poor, and the tumors are characterized by resistance to therapy. The aims of this study were to analyze the prognostic value of the expression of the protein tyrosine phosphatase non-receptor type 6 (PTPN6, also referred to as SHP1) in high-grade glioma patients, the epigenetic regulation of the expression of PTPN6, and the role of its expression in chemotherapy resistance in glioma-derived cells. PTPN6 expression was analyzed with immunohistochemistry in 89 high-grade glioma patients. Correlation between PTPN6 expression and overall survival was analyzed with Kaplan-Meier univariate analysis and Cox regression multivariate analysis. Differences in drug sensitivity to a panel of 16 chemotherapeutic drugs between PTPN6-overexpressing clones and control clones were analyzed in vitro with the fluorometric microculture cytotoxicity assay. Cell cycle analysis was done with Krishan staining and flow cytometry. Apoptosis was analyzed with a cell death detection ELISA kit as well as cleaved caspase-3 and caspase-9 Western blotting. Autophagy was analyzed with LC3B Western blotting. Methylation of the PTPN6 promoter was analyzed with bisulfite pyrosequencing, and demethylation of PTPN6 was done with decitabine treatment. The PTPN6 expression correlated in univariate analysis to poor survival for anaplastic glioma patients (p = 0.026). In glioma-derived cell lines, overexpression of PTPN6 caused increase resistance (p < 0.05) to the chemotherapeutic drugs bortezomib, cisplatin, and melphalan. PTPN6 expression did not affect bortezomib-induced cell cycle arrest, apoptosis, or autophagy. Low PTPN6 promoter methylation correlated to protein expression, and the protein expression was increased upon demethylation in glioma-derived cells. PTPN6 expression may be a factor contributing to poor survival for anaplastic glioma patients, and in glioma-derived cells, its expression is epigenetically regulated and influences the response to chemotherapy.
    Tumor Biology 02/2014; · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypermethylation of the suppressor of cytokine signaling 3(SOCS3) promoter has been reported to predict a poor prognosis in several cancers including glioblstoma multiforme (GBM). We explored the function of SOCS3 promoter hypermethylation in GBM cohorts, including analysis of the CpG island methylator phenotype (CIMP), when a large number of gene loci are simultaneously hypermethylated. A whole genome promoter methylation profile was performed in a cohort of 33 GBM samples, with 13 long-term survivors (LTS; overall survival ≥ 18 months) and 20 short-term survivors (STS; overall survival ≤ 9 months). The SOCS3 promoter methylation status was compared between the two groups. In addition, we investigated the relationship of SOCS3 promoter methylation and G-CIMP status. Interestingly, in our present study, we found that SOCS3 promoter methylation was statistically significantly higher in the 13 LTS than that in the 20 STS. Furthermore, high SOCS3 promoter methylation detected via pyro-sequencing predicted a better prognosis in an independent cohort containing 62 GBM patients. This correlation was validated by the dataset from the Cancer Genome Atlas(TCGA) and the Chinese Cancer Genome Atlas(CGGA). In addition, we found that hypermethylation of the SOCS3 promoter was tightly associated with the G-CIMP-positive GBM patients. Using a total of 359 clinical samples, we demonstrate that SOCS3 promoter hypermethylation status has a favorable prognostic value in GBM patients because of whole genome methylation status. Particularly, the hypermethylation of the SOCS3 promoter indicates positive G-CIMP status.
    PLoS ONE 01/2014; 9(3):e91829. · 3.73 Impact Factor

Full-text

View
0 Downloads
Available from