Histone Deacetylase Inhibitor Valproic Acid Inhibits Cancer Cell Proliferation via Down-regulation of the Alzheimer Amyloid Precursor Protein

Department of Molecular Psychiatry, Alzheimer Ph.D. Graduate School, University of Goettingen, 37075 Goettingen, Germany.
Journal of Biological Chemistry (Impact Factor: 4.57). 02/2010; 285(14):10678-89. DOI: 10.1074/jbc.M109.057836
Source: PubMed


The beta-amyloid precursor protein (APP) represents a type I transmembrane glycoprotein that is ubiquitously expressed. In the brain, it is a key player in the molecular pathogenesis of Alzheimer disease. Its physiological function is however less well understood. Previous studies showed that APP is up-regulated in prostate, colon, pancreatic tumor, and oral squamous cell carcinoma. In this study, we show that APP has an essential role in growth control of pancreatic and colon cancer. Abundant APP staining was found in human pancreatic adenocarcinoma and colon cancer tissue. Interestingly, treating pancreatic and colon cancer cells with valproic acid (VPA, 2-propylpentanoic acid), a known histone deacetylase (HDAC) inhibitor, leads to up-regulation of GRP78, an endoplasmic reticulum chaperone immunoglobulin-binding protein. GRP78 is involved in APP maturation and inhibition of tumor cell growth by down-regulation of APP and secreted soluble APPalpha. Trichostatin A, a pan-HDAC inhibitor, also lowered APP and increased GRP78 levels. In contrast, treating cells with valpromide, a VPA derivative lacking HDAC inhibitory properties, had no effect on APP levels. VPA did not modify the level of epidermal growth factor receptor, another type I transmembrane protein, and APLP2, a member of the APP family, demonstrating the specificity of the VPA effect on APP. Small interfering RNA-mediated knockdown of APP also resulted in significantly decreased cell growth. Based on these observations, the data suggest that APP down-regulation via HDAC inhibition provides a novel mechanism for pancreatic and colon cancer therapy.

Download full-text


Available from: Vivek Venkataramani, Oct 05, 2015
55 Reads
  • Source
    • "Trichostatin A (Sigma-Aldrich Chemie) 500 nM was solubilized in DMSO. Concentrations of these two HDACi were selected according to Venkataramani et al (17). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Phytoestrogens have been shown to exert anti-proliferative effects on different cancer cells. In addition it could be demonstrated that inhibition of proliferation is associated with downregulation of the known stem cell factors NANOG, POU5F1 and SOX2 in tumor cells. We demonstrate the potential of Belamcanda chinensis extract (BCE) and tectorigenin as anticancer drugs in cell lines of malignant testicular germ cell tumor cells (TGCT) by inhibition of proliferation and regulating the expression of stem cell factors. The TGCT cell lines TCam-2 and NTera-2 were treated with BCE or tectorigenin and MTT assay was used to measure the proliferation of tumor cells. In addition, the expression of stem cell factors was analyzed by quantitative PCR and western blot analysis. Furthermore, global expression analysis was performed by microarray technique. BCE and tectorigenin inhibited proliferation and downregulated the stem cell factors NANOG and POU5F1 in TGCT cells. In addition, gene expression profiling revealed induction of genes important for the differentiation and inhibition of oncogenes. Utilizing connectivity map in an attempt to elucidate mechanism underlying BCE treatments we found highly positive association to histone deacetylase inhibitors (HDACi) amongst others. Causing no histone deacetylase inhibition, the effects of BCE on proliferation and stem cell factors may be based on histone-independent mechanisms such as direct hyperacetylation of transcription factors. Based on these findings, phytoestrogens may be useful as new agents in the treatment of TGCT.
    International Journal of Oncology 08/2013; 43(5). DOI:10.3892/ijo.2013.2060 · 3.03 Impact Factor
  • Source
    • "APP is a transmembrane protein made up of a large, multidomain extracellular extension, a small, single-pass transmembrane part, and a small intracellular extension (Figure 1A). Alternative exon splicing of the APP gene affords eight different mRNAs that translate into eight APP iso-forms whose length range from 365 to 770 amino acid residues [3], with APP695 as the dominant form in the brain. Sequential processing of APP by the proteolytic enzymes β-secretase and γ-secretase liberates Aβ: a sequence of typically 40 or 42 residues originally located partially in the membrane and for the remainder extracellularly. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The β-amyloid precursor protein (APP), which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II) binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III) product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II) just as in ferritin. We measured the ferroxidase activity indirectly (i) by the incorporation of the Fe(III) product of the ferroxidase reaction into transferrin and directly (ii) by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II) oxidation by molecular oxygen. Zn(II) binds to transferrin and diminishes its Fe(III) incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and - by implication - of APP should be re-evaluated.
    PLoS ONE 08/2012; 7(8):e40287. DOI:10.1371/journal.pone.0040287 · 3.23 Impact Factor
  • Source
    • "HSPA5 (also known as GRP78) is an ER chaperone involved in the ER stress response and had previously been shown to interact with APP and modulate Aβ production [39]. In addition, GRP78 was recently identified as a gene that may counteract the proliferative effect of secreted APPs in tumor models [40]. As functional annotation clustering identified neurogenesis as a pathway affected in all genotypes compared to wild-type, it was interesting to find Cdkn1a, also known as p21, amongst these co-regulated genes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The β-amyloid precursor protein (APP) and the related β-amyloid precursor-like proteins (APLPs) undergo complex proteolytic processing giving rise to several fragments. Whereas it is well established that Aβ accumulation is a central trigger for Alzheimer's disease, the physiological role of APP family members and their diverse proteolytic products is still largely unknown. The secreted APPsα ectodomain has been shown to be involved in neuroprotection and synaptic plasticity. The γ-secretase-generated APP intracellular domain (AICD) functions as a transcriptional regulator in heterologous reporter assays although its role for endogenous gene regulation has remained controversial. To gain further insight into the molecular changes associated with knockout phenotypes and to elucidate the physiological functions of APP family members including their proposed role as transcriptional regulators, we performed DNA microarray transcriptome profiling of prefrontal cortex of adult wild-type (WT), APP knockout (APP-/-), APLP2 knockout (APLP2-/-) and APPsα knockin mice (APPα/α) expressing solely the secreted APPsα ectodomain. Biological pathways affected by the lack of APP family members included neurogenesis, transcription, and kinase activity. Comparative analysis of transcriptome changes between mutant and wild-type mice, followed by qPCR validation, identified co-regulated gene sets. Interestingly, these included heat shock proteins and plasticity-related genes that were both down-regulated in knockout cortices. In contrast, we failed to detect significant differences in expression of previously proposed AICD target genes including Bace1, Kai1, Gsk3b, p53, Tip60, and Vglut2. Only Egfr was slightly up-regulated in APLP2-/- mice. Comparison of APP-/- and APPα/α with wild-type mice revealed a high proportion of co-regulated genes indicating an important role of the C-terminus for cellular signaling. Finally, comparison of APLP2-/- on different genetic backgrounds revealed that background-related transcriptome changes may dominate over changes due to the knockout of a single gene. Shared transcriptome profiles corroborated closely related physiological functions of APP family members in the adult central nervous system. As expression of proposed AICD target genes was not altered in adult cortex, this may indicate that these genes are not affected by lack of APP under resting conditions or only in a small subset of cells.
    BMC Genomics 03/2011; 12(1):160. DOI:10.1186/1471-2164-12-160 · 3.99 Impact Factor
Show more