Article

Tumor Detection by Imaging Proteolytic Activity

Graduate Group in Biophysics, Department of Pharmaceutical Chemistry, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, USA.
Cancer Research (Impact Factor: 9.28). 02/2010; 70(4):1505-12. DOI: 10.1158/0008-5472.CAN-09-1640
Source: PubMed

ABSTRACT The cell surface protease membrane-type serine protease-1 (MT-SP1), also known as matriptase, is often upregulated in epithelial cancers. We hypothesized that dysregulation of MT-SP1 with regard to its cognate inhibitor hepatocyte growth factor activator inhibitor-1 (HAI-1), a situation that increases proteolytic activity, might be exploited for imaging purposes to differentiate malignant from normal tissue. In this study, we show that MT-SP1 is active on cancer cells and that its activity may be targeted in vivo for tumor detection. A proteolytic activity assay with several MT-SP1-positive human cancer cell lines showed that MT-SP1 antibodies that inhibit recombinant enzyme activity in vitro also bind and inhibit the full-length enzyme expressed on cells. In contrast, in the same assay, MT-SP1-negative cancer cell lines were inactive. Fluorescence microscopy confirmed the cell surface localization of labeled antibodies bound to MT-SP1-positive cells. To evaluate in vivo targeting capability, 0.7 to 2 nmoles of fluorescently labeled antibodies were administered to mice bearing tumors that were positive or negative for MT-SP1. Antibodies localized to MT-SP1-positive tumors (n = 3), permitting visualization of MT-SP1 activity, whereas MT-SP1-negative tumors (n = 2) were not visualized. Our findings define MT-SP1 activity as a useful biomarker to visualize epithelial cancers using a noninvasive antibody-based method.

0 Followers
 · 
124 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocyte growth factor activator (HGFA), matriptase and hepsin are all S1 trypsin-like serine endopeptidases. HGFA is a plasma protease while hepsin and matriptase are type II transmembrane proteases (TTSPs). Upregulated expression and activity of all three proteases is associated with aberrant cancer cell signaling through c-MET and RON tyrosine kinase cell-signaling pathways in cancer. We modeled known benzamidine protease inhibitor scaffolds into the active sites of matriptase, hepsin and HGFA to design new non-peptide inhibitors of hepsin and HGFA. First, we used a docking model of the irreversible inhibitor, Nafamostat, bound to the active site of HGFA in order to explore structure activity relationships (SAR). Compounds were screened for inhibition of HGFA activity in a kinetic enzyme assay using a chromogenic substrate. Next, we designed matched pair compound libraries of 3-amidino and 4-amidino phenylalanine (benzamidine) arginine peptidomimetics based on the structure of matriptase inhibitor, CJ-672. Compounds were screened for inhibition of HGFA, matriptase, and hepsin enzyme activity using fluorogenic substrates. Using this strategy we have discovered the first reported non-peptide small molecule inhibitors of both HGFA and hepsin. These inhibitors have differential potency and selectivity towards all three proteases. A subset of piperazinyl ureas highlighted by 25a, have excellent potency and selectivity for hepsin over matriptase and HGFA. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Bioorganic & medicinal chemistry 04/2015; 23(10). DOI:10.1016/j.bmc.2015.03.072 · 2.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Matriptase is a member of the family of type II transmembrane serine proteases that is essential for development and maintenance of several epithelial tissues. Matriptase is synthesized as a single-chain zymogen precursor that is processed into a two-chain disulfide-linked form dependent on its own catalytic activity leading to the hypothesis that matriptase functions at the pinnacle of several protease induced signal cascades. Matriptase is usually found in either its zymogen form or in a complex with its cognate inhibitor hepatocyte growth factor activator inhibitor 1 (HAI-1), whereas the active non-inhibited form has been difficult to detect. In this study, we have developed an assay to detect enzymatically active non-inhibitor-complexed matriptase by using a biotinylated peptide substrate-based chloromethyl ketone (CMK) inhibitor. Covalently CMK peptide-bound matriptase is detected by streptavidin pull-down and subsequent analysis by Western blotting. This study presents a novel assay for detection of enzymatically active matriptase in living human and murine cells. The assay can be applied to a variety of cell systems and species.
    PLoS ONE 10/2013; 8(10):e77146. DOI:10.1371/journal.pone.0077146 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The type 2 transmembrane serine protease matriptase is broadly expressed in human carcinomas and hematological cancers. The proteolytic activity of matriptase is a potential target of drugs and imaging probes. We assessed the fate of active matriptase following the induction of matriptase zymogen activation. Exposing eight human carcinoma cells to pH 6.0 buffer induced robust matriptase zymogen activation followed by rapid inhibition of the nascent active matriptase by hepatocyte growth factor activator inhibitor (HAI)-1. Consequently, no enzymatically active matriptase was detected in these cells. Some active matriptase is, however, rapidly shed to the extracellular milieu by these carcinoma cells. The lack of cell-associated active matriptase and the shedding of active matriptase were also observed in two hematological cancer lines. Matriptase shedding is correlated closely with the induction of matriptase activation, suggesting that matriptase activation and shedding are kinetically coupled. The coupling allows a proportion of active matriptase to survive HAI-1 inhibition by rapid shedding from cell surface. Our study suggests that cellular free, active matriptase is scarce and might not be an effective target for in vivo imaging and drug development.
    PLoS ONE 03/2014; 9(3):e92244. DOI:10.1371/journal.pone.0092244 · 3.53 Impact Factor

Preview

Download
0 Downloads
Available from