Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function.

Department of Biochemistry, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506-3702, USA.
Insect biochemistry and molecular biology (Impact Factor: 3.42). 02/2010; 40(3):214-27. DOI: 10.1016/j.ibmb.2010.01.011
Source: PubMed

ABSTRACT This study is focused on the characterization and expression of genes in the red flour beetle, Tribolium castaneum, encoding proteins that possess one or more six-cysteine-containing chitin-binding domains related to the peritrophin A domain (ChtBD2). An exhaustive bioinformatics search of the genome of T. castaneum queried with ChtBD2 sequences yielded 13 previously characterized chitin metabolic enzymes and 29 additional proteins with signal peptides as well as one to 14 ChtBD2s. Using phylogenetic analyses, these additional 29 proteins were classified into three large families. The first family includes 11 proteins closely related to the peritrophins, each containing one to 14 ChtBD2s. These are midgut-specific and are expressed only during feeding stages. We propose the name "Peritrophic Matrix Proteins" (PMP) for this family. The second family contains eight proteins encoded by seven genes (one gene codes for 2 splice variants), which are closely related to gasp/obstructor-like proteins that contain 3 ChtBD2s each. The third family has ten proteins that are of diverse sizes and sequences with only one ChtBD2 each. The genes of the second and third families are expressed in non-midgut tissues throughout all stages of development. We propose the names "Cuticular Proteins Analogous to Peritophins 3" (CPAP3) for the second family that has three ChtBD2s and "Cuticular Proteins Analogous to Peritophins 1 (CPAP1) for the third family that has 1 ChtBD2. Even though proteins of both CPAP1 and CPAP3 families have the "peritrophin A" domain, they are expressed only in cuticle-forming tissues. We determined the exon-intron organization of the genes, encoding these 29 proteins as well as the domain organization of the encoded proteins with ChtBD2s. All 29 proteins have predicted cleavable signal peptides and ChtBD2s, suggesting that they interact with chitin in extracellular locations. Comparison of ChtBD2s-containing proteins in different insect species belonging to different orders suggests that ChtBD2s are ancient protein domains whose affinity for chitin in extracellular matrices has been exploited many times for a range of biological functions. The differences in the expression profiles of PMPs and CPAPs indicate that even though they share the peritrophin A motif for chitin binding, these three families of proteins have quite distinct biological functions.


Available from: Subbaratnam Muthukrishnan, Mar 20, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insects have been extraordinary successful in colonizing terrestrial habitats and this success is partly due to a protective cuticle that mainly contains chitin and proteins. The cuticle has been well studied in larvae and adults, but little attention has been paid to the cuticle of the egg. This cuticle is secreted by the serosa, an extraembryonic epithelium that surrounds the yolk and embryo in all insect eggs, but was lost in the Schizophoran flies to which Drosophila belongs. We therefore set out to investigate serosal cuticle formation and function in a beetle (Tribolium castaneum) using RNAi-mediated knockdown of three candidate genes known to structure chitin in the adult cuticle, and we aimed to identify other serosal cuticle genes using RNAsequencing. Knockdown of Knickkopf (TcKnk-1) or Retroactive (TcRtv) affects the laminar structure of the serosal cuticle, as revealed by Transmission Electron Microscopy in knockdown eggs. In the absence of this laminar structure, significantly fewer eggs survive at low humidity compared to wild-type eggs. Survival in dry conditions is also adversely affected when cross-linking among proteins and chitin is prevented by Laccase2 (TcLac-2) RNAi. Finally, we compare the transcriptomes of wild-type eggs to serosa-less eggs and find serosa-biased expression of 21 cuticle-related genes including structural components, chitin deacetylases and chitinases. Our data indicate that the serosal cuticle utilizes the same machinery for structuring the cuticle as adults. We demonstrate that the structure of the cuticle is crucial for desiccation resistance, and we put forward the serosal cuticle of Tribolium as an excellent model to study the ecological properties of the insect cuticle. Copyright © 2015. Published by Elsevier Ltd.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The insect cuticle is a unique material that covers the exterior of the animal as well as lining the foregut, hindgut, and tracheae. It offers protection from predators and desiccation, defines body shape, and serves as an attachment site for internal organs and muscle. It has demonstrated remarkable variations in hardness, flexibility and elasticity, all the while being light weight, which allows for ease of movement and flight. It is composed primarily of chitin, proteins, catecholamines, and lipids. Proteomic analyses of cuticle from different life stages and species of insects has allowed for a more detailed examination of the protein content and how it relates to cuticle mechanical properties. It is now recognized that several groups of cuticular proteins exist and that they can be classified according to conserved amino acid sequence motifs. We have annotated the genome of the tobacco hornworm, Manduca sexta, for genes that encode putative cuticular proteins that belong to seven different groups: proteins with a Rebers and Riddiford motif (CPR), proteins analogous to peritrophins (CPAP), proteins with a tweedle motif (CPT), proteins with a 44 amino acid motif (CPF), proteins that are CPF-like (CPFL), proteins with an 18 amino acid motif (18 aa), and proteins with two to three copies of a C-X5-C motif (CPCFC). In total we annotated 248 genes, of which 207 belong to the CPR family, the most for any insect genome annotated to date. Additionally, we discovered new members of the CPAP family and determined that orthologous genes are present in other insects. We established orthology between the M. sexta and Bombyx mori genes and identified duplication events that occurred after separation of the two species. Finally, we utilized 52 RNAseq libraries to ascertain gene expression profiles that revealed commonalities and differences between different tissues and developmental stages. Copyright © 2015. Published by Elsevier Ltd.
    Insect Biochemistry and Molecular Biology 01/2015; DOI:10.1016/j.ibmb.2014.12.010 · 3.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Culex pipiens, an invasive mosquito and vector of West Nile virus in the US, has two morphologically indistinguishable forms that differ dramatically in behavior and physiology. Cx. pipiens form pipiens is primarily a bird-feeding temperate mosquito, while the sub-tropical Cx. pipiens form molestus thrives in sewers and feeds on mammals. Because the feral form can diapause during the cold winters but the domestic form cannot, the two Cx. pipiens forms are allopatric in northern Europe and, although viable, hybrids are rare. Cx. pipiens form molestus has spread across all inhabited continents and hybrids of the two forms are common in the US. Here we elucidate the genes and gene families with the greatest divergence rates between these phenotypically diverged mosquito populations, and discuss them in light of their potential biological and ecological effects. After generating and assembling novel transcriptome data for each population, we performed pairwise tests for nonsynonymous divergence (Ka) of homologous coding sequences and examined gene ontology terms that were statistically over-represented in those sequences with the greatest divergence rates. We identified genes involved in digestion (serine endopeptidases), innate immunity (fibrinogens and α-macroglobulins), hemostasis (D7 salivary proteins), olfaction (odorant binding proteins) and chitin binding (peritrophic matrix proteins). By examining molecular divergence between closely related yet phenotypically divergent forms of the same species, our results provide insights into the identity of rapidly-evolving genes between incipient species. Additionally, we found that families of signal transducers, ATP synthases and transcription regulators remained identical at the amino acid level, thus constituting conserved components of the Cx. pipiens proteome. We provide a reference with which to gauge the divergence reported in this analysis by performing a comparison of transcriptome sequences from conspecific (yet allopatric) populations of another member of the Cx. pipiens complex, Cx. quinquefasciatus.
    02/2015; 3:e807. DOI:10.7717/peerj.807