Article

Structural and Energetic Mechanisms of Cooperative Autoinhibition and Activation of Vav1

Department of Biochemistry, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA.
Cell (Impact Factor: 31.96). 01/2010; 140(2):246-56. DOI: 10.1016/j.cell.2009.12.033
Source: PubMed

ABSTRACT Vav proteins are guanine nucleotide exchange factors (GEFs) for Rho family GTPases. They control processes including T cell activation, phagocytosis, and migration of normal and transformed cells. We report the structure and biophysical and cellular analyses of the five-domain autoinhibitory element of Vav1. The catalytic Dbl homology (DH) domain of Vav1 is controlled by two energetically coupled processes. The DH active site is directly, but weakly, inhibited by a helix from the adjacent Acidic domain. This core interaction is strengthened 10-fold by contacts of the calponin homology (CH) domain with the Acidic, pleckstrin homology, and DH domains. This construction enables efficient, stepwise relief of autoinhibition: initial phosphorylation events disrupt the modulatory CH contacts, facilitating phosphorylation of the inhibitory helix and consequent GEF activation. Our findings illustrate how the opposing requirements of strong suppression of activity and rapid kinetics of activation can be achieved in multidomain systems.

0 Bookmarks
 · 
112 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small GTPases participate in a broad range of cellular processes such as proliferation, differentiation, and migration. The exchange of GDP for GTP resulting in the activation of these GTPases is catalyzed by a group of enzymes called guanine nucleotide exchange factors (GEFs), of which two classes: Dbl-related exchange factors and the more recently described dedicator of cytokinesis proteins family exchange factors. Increasingly, deregulation of normal GEF activity or function has been associated with a broad range of disease states, including neurodegeneration and neurodevelopmental disorders. In this review, we examine this evidence with special emphasis on the novel role of Rho guanine nucleotide exchange factor (RGNEF/p190RhoGEF) in the pathogenesis of amyotrophic lateral sclerosis. RGNEF is the first neurodegeneration-linked GEF that regulates not only RhoA GTPase activation but also functions as an RNA binding protein that directly acts with low molecular weight neurofilament mRNA 3' untranslated region to regulate its stability. This dual role for RGNEF, coupled with the increasing understanding of the key role for GEFs in modulating the GTPase function in cell survival suggests a prominent role for GEFs in mediating a critical balance between cytotoxicity and neuroprotection which, when disturbed, contributes to neuronal loss.
    Frontiers in Cellular Neuroscience 09/2014; 8. DOI:10.3389/fncel.2014.00282 · 4.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intrinsically disordered proteins (IDPs) are important components of the cellular signalling machinery, allowing the same polypeptide to undertake different interactions with different consequences. IDPs are subject to combinatorial post-translational modifications and alternative splicing, adding complexity to regulatory networks and providing a mechanism for tissue-specific signalling. These proteins participate in the assembly of signalling complexes and in the dynamic self-assembly of membrane-less nuclear and cytoplasmic organelles. Experimental, computational and bioinformatic analyses combine to identify and characterize disordered regions of proteins, leading to a greater appreciation of their widespread roles in biological processes.
    Nature Reviews Molecular Cell Biology 12/2014; 16(1):18-29. DOI:10.1038/nrm3920 · 37.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously reported that nonmuscle myosin II-interacting guanine nucleotide exchange factor (MyoGEF) plays an important role in the regulation of cell migration and cytokinesis. Like many other guanine nucleotide exchange factors (GEFs), MyoGEF contains a Dbl-homology (DH) domain and a pleckstrin homology (PH) domain. In this study we provide evidence demonstrating that intramolecular interactions between the DH domain (residues 162-351) and the carboxyl-terminal region (501-790) of MyoGEF can inhibit MyoGEF functions. In vitro and in vivo pull-down assays showed that the carboxyl-terminal region (residues 501-790) of MyoGEF could interact with the DH domain, but not with the PH domain. Expression of a MyoGEF carboxyl-terminal fragment (residues 501-790) decreased RhoA activation and suppressed actin filament formation in MDA-MB-231 breast cancer cells. Additionally, Matrigel invasion assays showed that exogenous expression of the MyoGEF carboxyl-terminal region decreased the invasion activity of MDA-MB-231 cells. Moreover, co-immunoprecipitation assays showed that phosphorylation of the MyoGEF carboxyl-terminal region by aurora B kinase interfered with the intramolecular interactions of MyoGEF. Furthermore, expression of the MyoGEF carboxyl-terminal region interfered with RhoA localization during cytokinesis and led to an increase in multinucleation. Together, our findings suggest that binding of the carboxyl-terminal region of MyoGEF to its DH domain acts as an autoinhibitory mechanism for the regulation of MyoGEF activation.
    Journal of Biological Chemistry 10/2014; 289(49). DOI:10.1074/jbc.M114.607267 · 4.60 Impact Factor

Full-text (2 Sources)

Download
28 Downloads
Available from
Jun 1, 2014