Article

The polyomavirus BK agnoprotein co-localizes with lipid droplets

Transplantation Virology, Institute for Medical Microbiology, Department of Biomedicine, University of Basel, CH-4003 Basel, Switzerland.
Virology (Impact Factor: 3.28). 02/2010; 399(2):322-31. DOI: 10.1016/j.virol.2010.01.011
Source: PubMed

ABSTRACT Agnoprotein encoded by human polyomavirus BK (BKV) is a late cytoplasmic protein of 66 amino acids (aa) of unknown function. Immunofluorescence microscopy revealed a fine granular and a vesicular distribution in donut-like structures. Using BKV(Dunlop)-infected or agnoprotein-transfected cells, we investigated agnoprotein co-localization with subcellular structures. We found that agnoprotein co-localizes with lipid droplets (LD) in primary human renal tubular epithelial cells as well as in other cells supporting BKV replication in vitro (UTA, Vero cells). Using agnoprotein-enhanced green fluorescent protein (EGFP) fusion constructs, we demonstrate that agnoprotein aa 20-42 are required for targeting LD, whereas aa 1-20 or aa 42-66 were not. Agnoprotein aa 22-40 are predicted to form an amphipathic helix, and mutations A25D and F39E, disrupting its hydrophobic domain, prevented LD targeting. However, changing the phosphorylation site serine-11 to alanine or aspartic acid did not alter LD co-localization. Our findings provide new clues to unravel agnoprotein function.

0 Followers
 · 
116 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Agnoprotein is a small multifunctional regulatory protein required for sustaining the productive replication of JC virus (JCV). It is a mostly cytoplasmic protein localizing in the perinuclear area and forms highly stable dimers/oligomers through a Leu/Ile/Phe-rich domain. There have been no three-dimensional structural data available for agnoprotein due to difficulties associated with the dynamic conversion from monomers to oligomers. Here, we report the first nuclear magnetic resonance (NMR) structure of a synthetic agnoprotein peptide spanning amino acids Thr17 to Glu55 where Lys23 to Phe39 encompassing the Leu/Ile/Phe-rich domain forms an amphipathic alpha-helix. On the basis of these structural data, a number of Ala substitution mutations were made to investigate the role of the alpha-helix in the structure and function of agnoprotein. Single L29A and L36A mutations exhibited a significant negative effect on both protein stability and viral replication, whereas the L32A mutation did not. In addition, the L29A mutant displayed a highly nuclear localization pattern, in contrast to the pattern for the wild type (WT). Interestingly, a triple mutant, the L29A + L32A + L36A mutant, yielded no detectable agnoprotein expression, and the replication of this JCV mutant was significantly reduced, suggesting that Leu29 and Leu36 are located at the dimer interface, contributing to the structure and stability of agnoprotein. Two other single mutations, L33A and E34A, did not perturb agnoprotein stability as drastically as that observed with the L29A and L36A mutations, but they negatively affected viral replication, suggesting that the role of these residues is functional rather than structural. Thus, the agnoprotein dimerization domain can be targeted for the development of novel drugs active against JCV infection.
    Journal of Virology 03/2014; 88(12). DOI:10.1128/JVI.00146-14 · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Novel broad-spectrum antimicrobials are a critical component of a strategy for combating antibiotic-resistant pathogens. In this study we explored the activity of the broad-spectrum antiviral compound ST-669 for activity against different intracellular bacteria, and began a characterization of its mechanism of antimicrobial action. ST-669 inhibits the growth of three different species of chlamydia and the intracellular bacteria Coxiella burnetii in Vero and Hela cells, but not in McCoy (murine) cells. The anti-chlamydial and anti-C. burnetii activity spectrum was consistent with those observed for tested viruses, suggesting a common mechanism of action. Cycloheximide treatment in the presence of ST-669 abrogated the inhibitory effect, demonstrating that eukaryotic protein synthesis is required for tested activity. Immunofluorescence microscopy demonstrated that different chlamydiae grow atypically in the presence of ST-669, in a manner that suggests the compound affects inclusion formation and organization. Microscopic analysis of cells treated with a fluorescent derivative of ST-669 demonstrated that the compound localized to host cell lipid droplets (LDs), but not to other organelles or the host cytosol. These results demonstrate that ST-669 affects intracellular growth in a host-cell dependent manner and interrupts proper development of chlamydial inclusions, possibly through a lipid droplet-dependent process.
    Antimicrobial Agents and Chemotherapy 04/2014; 58(7). DOI:10.1128/AAC.02064-13 · 4.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The human fetal glial cell line SVG was generated in 1985 by transfecting primary fetal brain cells with a plasmid containing an origin-defective mutant of simian virus 40 (SV40). The cells, which express SV40 large T-antigen, support the replication of human JC polyomavirus (JCPyV) and have been used for JCPyV studies but also for other studies in which cells of neural origin were desirable. We intended to use the SVG p12 cells from ATCC for antiviral drug studies with JCPyV. However, during initial experiments, immunofluorescence microscopy controls unexpectedly revealed cells expressing the late viral proteins VP1, VP2/VP3, and agno. This was confirmed by Western blotting. Since our agnoprotein antiserum is specific for BKPyV agnoprotein, infection with BKPyV was suspected. Indeed, specific BKPyV PCR of SVG p12 supernatants revealed a viral load of > 1 x 10(10) genomic equivalents/ml. Negative-staining electron microscopy showed characteristic polyomavirus virions, and infectious BKPyV was transmitted from SVG p12 supernatant to other cells. Long-range PCR covering the viral genome, followed by DNA sequencing, identified BKPyV strain UT as well as deletion derivatives. This was confirmed by next-generation sequencing. JCPyV (MAD-4) was found to infect apparently uninfected and BKPyV-infected SVG p12 cells. In total, 4 vials from 2 different ATCC lots of SVG p12 cells dating back to 2006 contained BKPyV, whereas the subclone SVG-A was negative. In conclusion, SVG p12 cells from ATCC contain infectious BKPyV. This may have affected results and interpretations of previous studies, and caution should be taken in future experiments.
    Journal of Virology 04/2014; 88(13). DOI:10.1128/JVI.00696-14 · 4.65 Impact Factor