Identification of a developmentally and hormonally regulated Delta-Class glutathione S-transferase in rice moth Corcyra cephalonica.

Department of Animal Sciences, University of Hyderabad, India.
Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology (Impact Factor: 1.61). 02/2010; 156(1):33-9. DOI: 10.1016/j.cbpb.2010.01.016
Source: PubMed

ABSTRACT Glutathione S-transferases (GSTs) are a large family of multifunctional enzymes, known for their role in cellular detoxification. Here we report a cytosolic GST with optimal activity at alkaline pH (8.3) from the visceral fat body of late-last instar (LLI) larvae of a lepidopteran insect rice moth Corcyra cephalonica. All previously known GSTs are active between pH 6.0 to 6.5. Purification and characterization revealed the Corcyra cephalonica GST (CcGST) as a 23-kDa protein. HPLC and 2D analysis showed a single isoform of the protein in the LLI visceral fat body. Degenerate primer based method identified a 701-nucleotide cDNA and the longest open reading frame contained 216 amino acids. Multiple sequence and structural alignment showed close similarity with delta-class GSTs. CcGST is present mainly in the fat body with highest activity at the late-last instar larval stage. Juvenile hormone (JH) negatively inhibits the CcGST activity both ex vivo and in vivo. We speculate that high expression and activity of CcGST in the fat body of the late-last instar larvae, when endogenous JH titer is low may have role in the insect post-embryonic development unrelated to their previously known function.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: The oriental fruit fly, Bactrocera dorsalis (Hendel) is widely distributed in Asia-Pacific regions, where it is a serious pest of a wide range of tropical and subtropical fruit and vegetable crops. In this study, seventeen cDNA encoding glutathione S-transferases (GSTs) in B. dorsalis were sequenced and characterized. RESULTS: Phylogenetic analysis revealed that sixteen GSTs belonged to five different cytosolic classes, including four in delta, eight in epsilon, two in omega, one in theta, and one in zeta. The remaining GST (BdGSTu1) was unclassified. RT-qPCR assay showed that the relative expression levels of five GST genes were significantly higher in larval stages than in adulthood. Tissue-specific expression analysis found that BdGSTe3, BdGSTe9, and BdGSTd5 were expressed highly in the midgut, BdGSTe4, BdGSTe6, BdGSTd6,and BdGSTz2 were higher in the fat body, and six GSTs were higher in Malpighian tubules. RT-qPCR confirmed that the expressions of nine GST genes were increased by malathion exposure at various times and doses, while BdGSTe4, BdGSTe9, and BdGSTt1 were increased by β-cypermethrin exposure. CONCLUSION: The increases in GST gene expression levels after malathion and β-cypermethrin exposure in B. dorsalis might elevate the ability of this species to detoxify other insecticides and xenobiotics.
    Pest Management Science 04/2013; 70(2). · 2.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glutathione S-transferases (GSTs) play an important role in detoxification of xenobiotics in both prokaryotic and eukaryotic cells. In this study, four GSTs (LmGSTd1, LmGSTs5, LmGSTt1, and LmGSTu1) representing different classes were identified from the migratory locust, Locusta migratoria. These four proteins were heterologously expressed in Escherichia coli as soluble fusion proteins, purified by Ni(2+)-nitrilotriacetic acid agarose column and biochemically characterized. LmGSTd1, LmGSTs5, and LmGSTu1 showed high activities with 1-chloro-2, 4-dinitrobenzene (CDNB), detectable activity with p-nitro-benzyl chloride (p-NBC) and 1, 2-dichloro-4-nitrobenzene (DCNB), whereas LmGSTt1 showed high activity with p-NBC and detectable activity with CDNB. The optimal pH of the locust GSTs ranged between 7.0 to 9.0. Ethacrynic acid and reactive blue effectively inhibited all four GSTs. LmGSTs5 was most sensitive to heavy metals (Cu(2+) and Cd(2+)). The maximum expression of the four GSTs was observed in Malpighian tubules and fat bodies as evaluated by western blot. The nymph mortalities after carbaryl treatment increased by 28 and 12% after LmGSTs5 and LmGSTu1 were silenced, respectively. The nymph mortalities after malathion and chlorpyrifos treatments increased by 26 and 18% after LmGSTs5 and LmGSTu1 were silenced, respectively. These results suggest that sigma GSTs in L. migratoria play a significant role in carbaryl detoxification, whereas some of other GSTs may also involve in the detoxification of carbaryl and chlorpyrifos.
    PLoS ONE 03/2013; 8(3):e58410. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The complete mitochondrial genome (mitogenome) of the rice moth, Corcyra cephalonica Stainton (Lepidoptera: Pyralidae) was determined as a circular molecular of 15,273 bp in size. The mitogenome composition (37 genes) and gene order are the same as the other lepidopterans. Nucleotide composition of the C. cephalonica mitogenome is highly A+T biased (80.43%) like other insects. Twelve protein-coding genes start with a typical ATN codon, with the exception of coxl gene, which uses CGA as the initial codon. Nine protein-coding genes have the common stop codon TAA, and the nad2, cox1, cox2, and nad4 have single T as the incomplete stop codon. 22 tRNA genes demonstrated cloverleaf secondary structure. The mitogenome has several large intergenic spacer regions, the spacer1 between trnQ gene and nad2 gene, which is common in Lepidoptera. The spacer 3 between trnE and trnF includes microsatellite-like repeat regions (AT)18 and (TTAT)(3). The spacer 4 (16 bp) between trnS2 gene and nad1 gene has a motif ATACTAT; another species, Sesamia inferens encodes ATCATAT at the same position, while other lepidopteran insects encode a similar ATACTAA motif. The spacer 6 is A+T rich region, include motif ATAGA and a 20-bp poly(T) stretch and two microsatellite (AT)(9), (AT)(8) elements.
    Journal of Insect Science 06/2012; 12(72):1-14. · 0.92 Impact Factor