Sex-preselected buffalo (Bubalus bubalis) calves derived from artificial insemination with sexed sperm

Animal Reproduction Institute, Guangxi Key Laboratory of Subtropical Bio-resource Conservation and Utilization, Guangxi University, Nanning, PR China.
Animal reproduction science (Impact Factor: 1.58). 06/2010; 119(3-4):169-71. DOI: 10.1016/j.anireprosci.2010.01.001
Source: PubMed

ABSTRACT Flow cytometry sorting of X- and Y-chromosome bearing sperm has been emerging as a promising technology to alter the sex ratio in progenies of mammals in the recent years. The objective of this study was to evaluate the efficiency of AI by using the sexed sperm to produce sex-preselected calves in buffalo species. A total of 43 buffalo cows were inseminated with X-sorted sperm, 30 of which were confirmed pregnant 3 mo following AI. In terms of conception rate, significant difference was observed between AI with sexed sperm derived from different bulls (P<0.05), but not between sexed and non-sexed sperm (P>0.05), nor between heifers and parous buffalo cows (P>0.05). A total of 29 sex-preselected calves, 24 females and 5 males, developed to term and were viable on delivery. Results of this study indicate the feasibility of the application of the sexing technology to accelerate the genetic improvement in swamp buffalo.


Available from: Sheng-Sheng Lu, Dec 16, 2013
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Flow-cytometry sorting technology has been successfully used to separate the X- and Y-chromosome bearing spermatozoa for production of sex-preselected buffalo. However, an independent technique should be employed to validate the sorting accuracy. In the present study, X-chromosomes of bovine were micro-dissected from the metaphase spreads by using glass needles. Then X-chromosomes were then amplified by PCR and labelled with Cy3-dUTP for use as a probe in hybridization of the unsorted and sorted buffalo spermatozoa -chromosome. The results revealed that 47.7% (594/1246) of the unsorted buffalo spermatozoa were positive for X- chromosome probe, which was conformed to the sex ratio in buffalo (X:Y spermatozoa=1:1); 9.6% (275/2869) of the Y-sorted buffalo spermatozoa and 86.1% (1529/1776) of the X-sorted buffalo spermatozoa showed strong X-chromosome FISH signals. Flow cytometer re-analysis revealed that the proportions of X- and Y-bearing spermatozoa in the sorted X and Y semen was 89.6% and 86.7%, respectively. There were no significant differences between results assayed by flow-cytometry re-analysis and by FISH in this study. In conclusion, FISH probe derived from bovine X- chromosomes could be used to verify the purity of X and Y sorted spermatozoa in buffalo.
    Animal reproduction science 05/2011; 126(1-2):32-6. DOI:10.1016/j.anireprosci.2011.04.021 · 1.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to evaluate the influence of Hoechst 33342 (H-42) concentration and of the male donor on the efficiency of sex-sorting procedure in canine spermatozoa. Semen samples from six dogs (three ejaculates/dog) were diluted to 100 × 10(6) sperm/ml, split into four aliquots, stained with increasing H-42 concentrations (5, 7.5, 10 and 12.5 μl, respectively) and sorted by flow cytometry. The rates of non-viable (FDA+), oriented (OS) and selected spermatozoa (SS), as well as the average sorting rates (SR, sorted spermatozoa/s), were used to determine the sorting efficiency. The effects of the sorting procedure on the quality of sorted spermatozoa were evaluated in terms of total motility (TM), percentage of viable spermatozoa (spermatozoa with membrane and acrosomal integrity) and percentage of spermatozoa with reacted/damaged acrosomes. X- and Y-chromosome-bearing sperm populations were identified in all of the samples stained with 7.5, 10 and 12.5 μl of H-42, while these two populations were only identified in 77.5% of samples stained with 5 μl. The values of OS, SS and SR were influenced by the male donor (p < 0.01) but not by the H-42 concentration used. The quality of sorted sperm samples immediately after sorting was similar to that of fresh samples, while centrifugation resulted in significant reduction (p < 0.05) in TM and in the percentage of viable spermatozoa and a significant increase (p < 0.01) in the percentage of spermatozoa with damage/reacted acrosomes. In conclusion, the sex-sorting of canine spermatozoa by flow cytometry can be performed successfully using H-42 concentrations between 7.5 and 12.5 μl. The efficiency of the sorting procedure varies based on the dog from which the sperm sample derives.
    Reproduction in Domestic Animals 10/2013; DOI:10.1111/rda.12238 · 1.18 Impact Factor