Article

A mean field approach for computing solid-liquid surface tension for nanoscale interfaces.

Department of Chemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA.
The Journal of Chemical Physics (Impact Factor: 3.12). 02/2010; 132(5):054706. DOI: 10.1063/1.3308625
Source: PubMed

ABSTRACT The physical properties of a liquid in contact with a solid are largely determined by the solid-liquid surface tension. This is especially true for nanoscale systems with high surface area to volume ratios. While experimental techniques can only measure surface tension indirectly for nanoscale systems, computer simulations offer the possibility of a direct evaluation of solid-liquid surface tension although reliable methods are still under development. Here we show that using a mean field approach yields great physical insight into the calculation of surface tension and into the precise relationship between surface tension and excess solvation free energy per unit surface area for nanoscale interfaces. Previous simulation studies of nanoscale interfaces measure either excess solvation free energy or surface tension, but these two quantities are only equal for macroscopic interfaces. We model the solid as a continuum of uniform density in analogy to Hamaker's treatment of colloidal particles. As a result, the Hamiltonian of the system is imbued with parametric dependence on the size of the solid object through the integration limits for the solid-liquid interaction energy. Since the solid-liquid surface area is a function of the size of the solid, and the surface tension is the derivative of the system free energy with respect to this surface area, we obtain a simple expression for the surface tension of an interface of arbitrary shape. We illustrate our method by modeling a thin nanoribbon and a solid spherical nanoparticle. Although the calculation of solid-liquid surface tension is a demanding task, the method presented herein offers new insight into the problem, and may prove useful in opening new avenues of investigation.

0 Bookmarks
 · 
127 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We propose a novel method for computing the pressure tensor along the radial axis of a molecular system with spherical symmetry. The proposed method uses the slice averaged pressure to improve the numerical stability and precision significantly. Simplified expressions of the local pressure are derived for a conventional molecular force field including non-bond, bond stretching, angle bending, and torsion interactions; these expressions are advantageous in terms of the computational cost. We also discuss an algorithm to avoid numerical singularity. Finally, the method is successfully applied to three different molecular systems, i.e., a water droplet in oil, a spherical micelle, and a liposome.
    The Journal of Chemical Physics 09/2011; 135(9):094106. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have used molecular dynamics simulations to calculate the interfacial tension of hydroxylated SiO(2) nanoparticles under different temperatures and solutions (helium and brine with monovalent and divalent salts). In order to benchmark the atomistic model, quartz SiO(2) interfacial tension was measured based on inverse gas chromatography under He atmosphere. The experimental interfacial tension values for quartz were found between 0.512 and 0.617 N/m. Our calculated results for the interfacial tension of silica nanoparticles within helium atmosphere was 0.676 N/m, which is higher than the value found for the system containing He∕α-quartz (0.478 N/m), but it is similar to the one found for amorphous silica surface. We have also studied the interfacial tension of the nanoparticles in electrolyte aqueous solution for different types and salts concentrations (NaCl, CaCl(2), and MgCl(2)). Our calculations indicate that adsorption properties and salt solutions greatly influence the interfacial tension in an order of CaCl(2) > MgCl(2) > NaCl. This effect is due to the difference in distribution of ions in solution, which modifies the hydration and electrostatic potential of those ions near the nanoparticle.
    The Journal of Chemical Physics 04/2012; 136(16):164702. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biological applications of fullerenes are severely impeded by our incomplete understanding of their toxicity. Here we extend a recently developed computational method to gain insight into the behavior of fullerenes in lipid bilayer systems. The physical behavior of fullerenes is captured through a continuum model incorporating both their hollow geometry and surface chemistry. By using this model in molecular dynamics simulations we are able to continuously vary the fullerene size and study the resulting variation in equilibrium position, solvation free energy and water to lipid transfer free energy. The results show agreement with all-atom and coarse grained fullerene models and can be extended to study the aggregation of fullerenes in lipid bilayers.
    Current Nanoscience 09/2011; 7(5):667-673. · 1.36 Impact Factor

Full-text (2 Sources)

View
95 Downloads
Available from
Jun 1, 2014