Lactic acidosis in vivo: Testing the link between lactate generation and H+ accumulation in ischemic mouse muscle

Department of Radiology, Box 357115, University of Washington Medical Center, Seattle, WA 98195-7115, USA.
Journal of Applied Physiology (Impact Factor: 3.06). 06/2010; 108(6):1479-86. DOI: 10.1152/japplphysiol.01189.2009
Source: PubMed


The link between lactate generation and cellular acidosis has been questioned based on the possibility of H+ generation, independent of lactate production during glycolysis under physiological conditions. Here we test whether glycolytic H+ generation matches lactate production over a physiological pH and lactate range using ischemia applied to the hindlimb of a mouse. We measured the H+ generation and ATP level in vivo using 31P-magnetic resonance spectroscopy and chemically determined intracellular lactate level in the hindlimb muscles. No significant change was found in ATP content by chemical analysis (P>0.1), in agreement with the stoichiometric decline in phosphocreatine (20.2+/-1.2 mM) vs. rise in Pi (18.7+/-2.0 mM), as measured by 31P-magnetic resonance spectroscopy. A substantial drop in pH from 7.0 to 6.7 and lactate accumulation to 25 mM were found during 25 min of ischemia. The rise in H+ generation closely agreed with the accumulation of lactate, as shown by a close correlation with a slope near identity (0.98; r2=0.86). This agreement between glycolytic H+ production and elevation of lactate is confirmed by an analysis of the underlying reactions involved in glycolysis in vivo and supports the concept of lactic acidosis under conditions that substantially elevate lactate and drop pH. However, this link is expected to fail with conditions that deplete phosphocreatine, leading to net ATP hydrolysis and nonglycolytic H+ generation. Thus both direct measurements and an analysis of the stoichiometry of glycolysis in vivo support lactate acidosis as a robust concept for physiological conditions of the muscle cell.

12 Reads
  • Source
    • "Ischaemia results in a pH decline in muscle tissue [95] and the translocation to the Z- and I-bands of resident sHSPs [96,97], which is the location of the desmin intermediate filaments. Therefore, the data we have presented evidence the importance of pH changes to the interaction of CRYAB with desmin. "
    [Show abstract] [Hide abstract]
    ABSTRACT: CRYAB (αB-crystallin) is expressed in many tissues and yet the R120G mutation in CRYAB causes tissue-specific pathologies, namely cardiomyopathy and cataract. Here, we present evidence to demonstrate that there is a specific functional interaction of CRYAB with desmin intermediate filaments that predisposes myocytes to disease caused by the R120G mutation. We use a variety of biochemical and biophysical techniques to show that plant, animal and ascidian small heat-shock proteins (sHSPs) can interact with intermediate filaments. Nevertheless, the mutation R120G in CRYAB does specifically change that interaction when compared with equivalent substitutions in HSP27 (R140G) and into the Caenorhabditis elegans HSP16.2 (R95G). By transient transfection, we show that R120G CRYAB specifically promotes intermediate filament aggregation in MCF7 cells. The transient transfection of R120G CRYAB alone has no significant effect upon cell viability, although bundling of the endogenous intermediate filament network occurs and the mitochondria are concentrated into the perinuclear region. The combination of R120G CRYAB co-transfected with wild-type desmin, however, causes a significant reduction in cell viability. Therefore, we suggest that while there is an innate ability of sHSPs to interact with and to bind to intermediate filaments, it is the specific combination of desmin and CRYAB that compromises cell viability and this is potentially the key to the muscle pathology caused by the R120G CRYAB.
    Philosophical Transactions of The Royal Society B Biological Sciences 05/2013; 368(1617):20120375. DOI:10.1098/rstb.2012.0375 · 7.06 Impact Factor
  • Source
    Journal of Applied Physiology 03/2010; 108(6):1450-1. DOI:10.1152/japplphysiol.00308.2010 · 3.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Current understanding of lactate metabolism in fish is based almost entirely on the interpretation of concentration measurements that cannot be used to infer changes in flux. The goals of this investigation were: (1) to quantify baseline lactate fluxes in rainbow trout (Oncorhynchus mykiss) under normoxic conditions; (2) to establish how changes in rates of lactate appearance (R(a)) and disposal (R(d)) account for the increase in blood lactate elicited by hypoxia; and (3) to identify the tissues responsible for lactate production. R(a) and R(d) lactate of rainbow trout were measured in vivo by continuous infusion of [U-(14)C]lactate in trout exposed to 25% O(2) saturation or maintained in normoxia for 90 min. In normoxic fish, R(a) lactate decreased from 18.2 to 13.1 μmol kg(-1) min(-1) and R(d) lactate from 19.0 to 12.8. R(a) and R(d) were always matched, thereby maintaining a steady baseline blood lactate concentration of ∼0.8 mmol l(-1). By contrast, the hypoxic fish increased blood lactate to 8.9 mmol l(-1) and R(a) lactate from 18.4 to 36.5 μmol kg(-1) min(-1). This stimulation of anaerobic glycolysis was unexpectedly accompanied by a 52% increase in R(d) lactate from 19.9 to 30.3 μmol kg(-1) min(-1). White muscle was the main producer of lactate, which accumulated to 19.2 μmol g(-1) in this tissue. This first study of non-steady-state lactate kinetics in fish shows that the increase in lactate disposal elicited by hypoxia plays a strategic role in reducing the lactate load on the circulation. Without this crucial response, blood lactate accumulation would double.
    Journal of Experimental Biology 11/2010; 213(Pt 22):3802-9. DOI:10.1242/jeb.048512 · 2.90 Impact Factor
Show more