Article

Mechanisms involved in the antinociception induced by systemic administration of guanosine in mice.

Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
British Journal of Pharmacology (Impact Factor: 5.07). 03/2010; 159(6):1247-63. DOI: 10.1111/j.1476-5381.2009.00597.x
Source: PubMed

ABSTRACT It is well known that adenine-based purines exert multiple effects on pain transmission. However, less attention has been given to the potential effects of guanine-based purines on pain transmission. The aim of this study was to investigate the effects of intraperitoneal (i.p.) and oral (p.o.) administration of guanosine on mice pain models. Additionally, investigation into the mechanisms of action of guanosine, its potential toxicity and cerebrospinal fluid (CSF) purine levels were also assessed.
Mice received an i.p. or p.o. administration of vehicle (0.1 mM NaOH) or guanosine (up to 240 mg x kg(-1)) and were evaluated in several pain models.
Guanosine produced dose-dependent antinociceptive effects in the hot-plate, glutamate, capsaicin, formalin and acetic acid models, but it was ineffective in the tail-flick test. Additionally, guanosine produced a significant inhibition of biting behaviour induced by i.t. injection of glutamate, AMPA, kainate and trans-ACPD, but not against NMDA, substance P or capsaicin. The antinociceptive effects of guanosine were prevented by selective and non-selective adenosine receptor antagonists. Systemic administration of guanosine (120 mg x kg(-1)) induced an approximately sevenfold increase on CSF guanosine levels. Guanosine prevented the increase on spinal cord glutamate uptake induced by intraplantar capsaicin.
This study provides new evidence on the mechanism of action of the antinociceptive effects after systemic administration of guanosine. These effects seem to be related to the modulation of adenosine A(1) and A(2A) receptors and non-NMDA glutamate receptors.

0 Bookmarks
 · 
66 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that glutamatergic excitotoxicity and oxidative stress are implicated in the pathogenesis of hepatic encephalopathy (HE). The nucleoside guanosine exerts neuroprotective effects through the antagonism against glutamate neurotoxicity and antioxidant properties. In this study, we evaluated the neuroprotective effect of guanosine in an animal model of chronic HE. Rats underwent bile duct ligation (BDL) and 2 weeks later they were treated with i.p. injection of guanosine 7.5 mg/kg once a day for 1-week. We evaluated the effects of guanosine in HE studying several aspects: a) animal behavior using open field and Y-maze tasks; b) brain rhythm changes in electroencephalogram (EEG) recordings; c) purines and glutamate levels in the cerebral spinal fluid (CSF); and d) oxidative stress parameters in the brain. BDL rats presented increased levels of glutamate, purines and metabolites in the CSF, as well as increased oxidative damage. Guanosine was able not only to prevent these effects but also to attenuate the behavioral and EEG impairment induced by BDL. Our study shows the neuroprotective effects of systemic administration of guanosine in a rat model of HE and highlights the involvement of purinergic system in the physiopathology of this disease.
    Metabolic Brain Disease 05/2014; · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stroke is a devastating disease. Both excitotoxicity and oxidative stress play important roles in ischemic brain injury, along with harmful impacts on ischemic cerebral tissue. As guanosine plays an important neuroprotective role in the central nervous system, the purpose of this study was to evaluate the neuroprotective effects of guanosine and putative cerebral events following the onset of permanent focal cerebral ischemia. Permanent focal cerebral ischemia was induced in rats by thermocoagulation. Guanosine was administered immediately, 1 h, 3 h and 6 h after surgery. Behavioral performance was evaluated by cylinder testing for a period of 15 days after surgery. Brain oxidative stress parameters, including levels of ROS/RNS, lipid peroxidation, antioxidant non-enzymatic levels (GSH, vitamin C) and enzymatic parameters (SOD expression and activity and CAT activity), as well as glutamatergic parameters (EAAC1, GLAST and GLT1, glutamine synthetase) were analyzed. After 24 h, ischemic injury resulted in impaired function of the forelimb, caused brain infarct and increased lipid peroxidation. Treatment with guanosine restored these parameters. Oxidative stress markers were affected by ischemic insult, demonstrated by increased ROS/RNS levels, increased SOD expression with reduced SOD activity and decreased non-enzymatic (GSH and vitamin C) antioxidant defenses. Guanosine prevented increased ROS/RNS levels, decreased SOD activity, further increased SOD expression, increased CAT activity and restored vitamin C levels. Ischemia also affected glutamatergic parameters, illustrated by increased EAAC1 levels and decreased GLT1 levels; guanosine reversed the decreased GLT1 levels and did not affect the EAAC1 levels. The effects of brain ischemia were strongly attenuated by guanosine administration. The cellular mechanisms involved in redox and glutamatergic homeostasis, which were both affected by the ischemic insult, were also modulated by guanosine. These observations reveal that guanosine may represent a potential therapeutic agent in cerebral ischemia by preventing oxidative stress and excitotoxicity.
    PLoS ONE 01/2014; 9(2):e90693. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sesame oil is widely consumed as nutritious food, cooking oil, and in pharmaceuticals and food. In this study, the antinociceptive and anti-inflammatory properties of the sesame oil and sesamin were investigated. The sesame oil and sesamin reduced the number of abdominal contortions at the doses 100, 200, or 400 mg/kg. The first and second phases of the time paw licking were inhibited by sesame oil and sesamin (100, 200, or 400 mg/kg). After 90 min of treatment, sesame oil and sesamin increased the reaction time on a hot plate (200 or 400 mg/kg). Considering the tail-immersion assay, the sesame oil and sesamin produced significant effect after 60 min at the doses of 100, 200, or 400 mg/kg. After 4 h of application of the carrageenan, the sesame oil and sesamin were effective against the paw edema. The exudate volume and leucocyte migration were also reduced by sesame oil and sesamin. These results suggest that sesamin is one of the active compounds found in sesame oil and justify the antinociceptive and anti-inflammatory properties of this product.
    Nutrients 01/2014; 6(5):1931-44. · 3.15 Impact Factor

Full-text

View
1 Download
Available from