Article

The evolving place of incretin-based therapies in type 2 diabetes.

Medizinische Klinik IV, Otfried-Müller-Strasse 10, 72076, Tübingen, Germany.
Pediatric Nephrology (Impact Factor: 2.94). 07/2010; 25(7):1207-17. DOI: 10.1007/s00467-009-1435-z
Source: PubMed

ABSTRACT Treatment options for type 2 diabetes based on the action of the incretin hormone glucagon-like peptide-1 (GLP-1) were first introduced in 2005. These comprise the injectable GLP-1 receptor agonists solely acting on the GLP-1 receptor on the one hand and orally active dipeptidyl-peptidase inhibitors (DPP-4 inhibitors) raising endogenous GLP-1 and other hormone levels by inhibiting the degrading enzyme DPP-4. In adult medicine, both treatment options are attractive and more commonly used because of their action and safety profile. The incretin-based therapies stimulate insulin secretion and inhibit glucagon secretion in a glucose-dependent manner and carry no intrinsic risk of hypoglycaemia. GLP-1 receptor agonists allow weight loss, whereas DPP-4 inhibitors are weight neutral. This review gives an overview of the mechanism of action and the substances and clinical data available.

0 Bookmarks
 · 
162 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although there have been major advances in the understanding of the molecular mechanisms that contribute to the development of diabetic nephropathy, current best practice still leaves a significant treatment gap. The incidence of diabetes and associated nephropathy is increasing, with the main cause of mortality being related to cardiovascular causes. Novel therapies which are both 'cardio-renal'-protective seem the logical way forward. In the present review, we discuss the GLP-1 (glucagon-like peptide-1) receptor agonists and DPP-4 (dipeptidyl peptidase-4) inhibitors (incretin-based therapies), which are novel antidiabetic agents used in clinical practice and their role in diabetic nephropathy with specific focus on renoprotection and surrogate markers of cardiovascular disease. We discuss the pleiotropic effects of the incretin-based therapies apart from glucose-lowering and highlight the non-GLP-1 effects of DPP (dipeptidyl peptidase) inhibition. Large-scale clinical studies with cardiovascular end points are underway; however, studies with renal end points are lacking but much needed.
    Clinical Science 01/2013; 124(1):17-26. · 4.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Class B G-protein-coupled receptors (GPCRs) are receptors for peptide hormones that include glucagon, parathyroid hormone, and calcitonin. These receptors are involved in a wide spectrum of physiological activities, from metabolic regulation and stress control to development and maintenance of the skeletal system. As such, they are important drug targets for the treatment of diabetes, osteoporosis, and stress related disorders. Class B GPCRs are organized into two modular domains: an extracellular domain (ECD) and a helical bundle that contains seven transmembrane helices (TM domain). The ECD is responsible for the high affinity and specificity of hormone binding, and the TM domain is required for receptor activation and signal coupling to downstream G-proteins. Although the structure of the full-length receptor remains unknown, the ECD structures have been well characterized for a number of Class B GPCRs, revealing a common fold for ligand recognition. This review summarizes the general structural principles that guide hormone binding by Class B ECDs and their implications in the design of peptide hormone analogs for therapeutic purposes.
    Acta Pharmacologica Sinica 03/2012; 33(3):300-11. · 2.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetic kidney disease (DKD) is the most common cause of chronic kidney disease, leading to end-stage renal disease and cardiovascular disease. The overall number of patients with DKD will continue to increase in parallel with the increasing global pandemic of type 2 diabetes. Based on landmark clinical trials, DKD has become preventable by controlling conventional factors, including hyperglycemia and hypertension, with multifactorial therapy; however, the remaining risk of DKD progression is still high. In this review, we show the importance of targeting remission/regression of microalbuminuria in type 2 diabetic patients, which may protect against the progression of DKD and cardiovascular events. To achieve remission/regression of microalbuminuria, several steps are important, including the early detection of microalbuminuria with continuous screening, targeting HbA1c < 7.0% for glucose control, the use of renin angiotensin system inhibitors to control blood pressure, the use of statins or fibrates to control dyslipidemia, and multifactorial treatment. Reducing microalbuminuria is therefore an important therapeutic goal, and the absence of microalbuminuria could be a pivotal biomarker of therapeutic success in diabetic patients. Other therapies, including vitamin D receptor activation, uric acid-lowering drugs, and incretin-related drugs, may also be promising for the prevention of DKD progression.
    World journal of diabetes. 06/2014; 5(3):342-356.

Full-text (2 Sources)

View
46 Downloads
Available from
May 27, 2014