Article

CHD7 cooperates with PBAF to control multipotent neural crest formation.

Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA.
Nature (Impact Factor: 42.35). 02/2010; 463(7283):958-62. DOI: 10.1038/nature08733
Source: PubMed

ABSTRACT Heterozygous mutations in the gene encoding the CHD (chromodomain helicase DNA-binding domain) member CHD7, an ATP-dependent chromatin remodeller homologous to the Drosophila trithorax-group protein Kismet, result in a complex constellation of congenital anomalies called CHARGE syndrome, which is a sporadic, autosomal dominant disorder characterized by malformations of the craniofacial structures, peripheral nervous system, ears, eyes and heart. Although it was postulated 25 years ago that CHARGE syndrome results from the abnormal development of the neural crest, this hypothesis remained untested. Here we show that, in both humans and Xenopus, CHD7 is essential for the formation of multipotent migratory neural crest (NC), a transient cell population that is ectodermal in origin but undergoes a major transcriptional reprogramming event to acquire a remarkably broad differentiation potential and ability to migrate throughout the body, giving rise to craniofacial bones and cartilages, the peripheral nervous system, pigmentation and cardiac structures. We demonstrate that CHD7 is essential for activation of the NC transcriptional circuitry, including Sox9, Twist and Slug. In Xenopus embryos, knockdown of Chd7 or overexpression of its catalytically inactive form recapitulates all major features of CHARGE syndrome. In human NC cells CHD7 associates with PBAF (polybromo- and BRG1-associated factor-containing complex) and both remodellers occupy a NC-specific distal SOX9 enhancer and a conserved genomic element located upstream of the TWIST1 gene. Consistently, during embryogenesis CHD7 and PBAF cooperate to promote NC gene expression and cell migration. Our work identifies an evolutionarily conserved role for CHD7 in orchestrating NC gene expression programs, provides insights into the synergistic control of distal elements by chromatin remodellers, illuminates the patho-embryology of CHARGE syndrome, and suggests a broader function for CHD7 in the regulation of cell motility.

Download full-text

Full-text

Available from: Ching-Pin Chang, Oct 17, 2014
0 Followers
 · 
236 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Genetics Out-patient Department of Shanghai Children's Medical Center, we consulted a 3-year-old boy with multiple anomaly syndrome (congenital heart disease, cryptorchidism, congenital deafness, mental retardation, exophthalmos, laryngeal cartilage dysplasia and high arched palate). We ruled out the possibility of multiple deformities caused by genomic imbalances. The patient was then clinically considered to have CHARGE syndrome, an autosomal dominant multi-system disorder involving defects in multiple organs, and CHD7 is the only known gene associated with the syndrome. Sequencing analysis of CHD7 of the proband identified a de novo heterogeneous mutation (c.2916_2917del, p.Gln972HisfsX22), a two-nucleotide deletion causing reading frame shift and resulting in a truncated CHD7 protein. Computational structure analysis suggests that the truncated protein only contains the chromodomains of CHD7, but lacks the SWI2/SNF2-like ATPase/helicase domain and the DNA binding domain, which are indispensable for the proper function of the protein, especially on chromatin remodeling. The patient then received follow up treatment in different clinical departments in a long period. To our best knowledge, this is the first CHARGE syndrome in Chinese patients diagnosed by gene analysis. In summary, the clinical symptoms and the description of treatment in the present case, combined with genetic test and functional prediction of CHD7, are helpful for further understanding and genetic counseling of the CHARGE syndrome.
    12/2014; 2:469–478. DOI:10.1016/j.mgene.2014.06.002
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies. Birth Defects Research (Part C), 2014. © 2014 Wiley Periodicals, Inc.
    Birth Defects Research Part C Embryo Today Reviews 09/2014; 102(3). DOI:10.1002/bdrc.21082 · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Haploid spermatids undergo extensive cellular, molecular and morphological changes to form spermatozoa during spermiogenesis. Abnormalities in these steps can lead to serious male fertility problems, from oligospermia to complete azoospermia. CHD5 is a chromatin-remodeling nuclear protein expressed almost exclusively in the brain and testis. Male Chd5 knockout (KO) mice have deregulated spermatogenesis, characterized by immature sloughing of spermatids, spermiation failure, disorganization of the spermatogenic cycle and abnormal head morphology in elongating spermatids. This results in the inappropriate placement and juxtaposition of germ cell types within the epithelium. Sperm that did enter the epididymis displayed irregular shaped sperm heads, and retained cytoplasmic components. These sperm also stained positively for acidic aniline, indicating improper removal of histones and lack of proper chromatin condensation. Electron microscopy showed that spermatids in the seminiferous tubules of Chd5 KO mice have extensive nuclear deformation, with irregular shaped heads of elongated spermatids, and lack the progression of chromatin condensation in an anterior-to-posterior direction. However, the mRNA expression levels of other important genes controlling spermatogenesis were not affected. Chd5 KO mice also showed decreased H4 hyperacetylation beginning at stage IX, step 9, which is vital for the histone-transition protein replacement in spermiogenesis. Our data indicate that CHD5 is required for normal spermiogenesis, especially for spermatid chromatin condensation.
    Mechanisms of development 02/2014; 131:35-46. DOI:10.1016/j.mod.2013.10.005 · 2.24 Impact Factor