Article

Three-dimensional organization of promyelocytic leukemia nuclear bodies.

Division of High Resolution Optical Microscopy, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany.
Journal of Cell Science (Impact Factor: 5.88). 02/2010; 123(Pt 3):392-400. DOI: 10.1242/jcs.053496
Source: PubMed

ABSTRACT Promyelocytic leukemia nuclear bodies (PML-NBs) are mobile subnuclear organelles formed by PML and Sp100 protein. They have been reported to have a role in transcription, DNA replication and repair, telomere lengthening, cell cycle control and tumor suppression. We have conducted high-resolution 4Pi fluorescence laser-scanning microscopy studies complemented with correlative electron microscopy and investigations of the accessibility of the PML-NB subcompartment. During interphase PML-NBs adopt a spherical organization characterized by the assembly of PML and Sp100 proteins into patches within a 50- to 100-nm-thick shell. This spherical shell of PML and Sp100 imposes little constraint to the exchange of components between the PML-NB interior and the nucleoplasm. Post-translational SUMO modifications, telomere repeats and heterochromatin protein 1 were found to localize in characteristic patterns with respect to PML and Sp100. From our findings, we derived a model that explains how the three-dimensional organization of PML-NBs serves to concentrate different biological activities while allowing for an efficient exchange of components.

0 Bookmarks
 · 
102 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In progressive multifocal leukoencephalopathy, JC virus-infected oligodendroglia display 2 distinct patterns of intranuclear viral inclusions: full inclusions in which progeny virions are present throughout enlarged nuclei and dot-shaped inclusions in which virions are clustered in subnuclear domains termed "promyelocytic leukemia nuclear bodies" (PML-NBs). Promyelocytic leukemia nuclear bodies may serve a scaffolding role in viral progeny production. We analyzed the formation process of intranuclear viral inclusions by morphometry and assessed PML-NB alterations in the brains of 2 patients with progressive multifocal leukoencephalopathy. By immunohistochemistry, proliferating cell nuclear antigen was most frequently detected in smaller nuclei; cyclin A was detected in larger nuclei. This suggests an S-to-G2 cell cycle transition in infected cells associated with nuclear enlargement. Sizes of PML-NBs were variable, but they were usually either small speckles 200 to 400 nm in diameter or distinct spherical shells with a diameter of 1 μm or more. By confocal microscopy, JC virus capsid proteins were associated with both small and large PML-NBs, but disruption of large PML-NBs was observed by ground-state depletion fluorescence nanoscopy. Clusters of progeny virions were also detected by electron microscopy. Our data suggest that, in progressive multifocal leukoencephalopathy, JC virus produces progeny virions in enlarging oligodendrocyte nuclei in association with growing PML-NBs and with cell cycle transition through an S-to-G2-like state.This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License, where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially. http://creativecommons.org/licenses/by-nc-nd/3.0.
    Journal of neuropathology and experimental neurology. 04/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, but instead results from oxidation-mediated PML multimerization. Oxidized PML spherical meshes recruit UBC9, which enhances PML sumoylation, allow partner recruitment through SIM interactions, and ultimately enhance partner sumoylation. Intermolecular SUMO-SIM interactions then enforce partner sequestration within the NB inner core. Accordingly, oxidative stress enhances NB formation and global sumoylation in vivo. Some NB-associated sumoylated partners also become polyubiquitinated by RNF4, precipitating their proteasomal degradation. As several partners are protein-modifying enzymes, NBs could act as sensors that facilitate and confer oxidative stress sensitivity not only to sumoylation but also to other post-translational modifications, thereby explaining alterations of stress response upon PML or NB loss.
    The Journal of Cell Biology 03/2014; 204(6):931-45. · 10.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously demonstrated that acquisition of intricate patterns of activating (H3K4me3, H3K9/K14ac) and repressive (H3K27me3) histone modifications is a hallmark of KSHV latency establishment. The precise molecular mechanisms that shape the latent histone modification landscape, however, remain unknown. Promyelocytic leukemia nuclear bodies (PML-NB), also called nuclear domain 10 (ND10), have emerged as mediators of innate immune responses that can limit viral gene expression via chromatin based mechanisms. Consequently, although ND10 functions thus far have been almost exclusively investigated in models of productive herpesvirus infection, it has been proposed that they also may contribute to the establishment of viral latency. Here, we report the first systematic study of the role of ND10 during KSHV latency establishment, and link alterations in the subcellular distribution of ND10 components to a temporal analysis of histone modification acquisition and host cell gene expression during the early infection phase. Our study demonstrates that KSHV infection results in a transient interferon response that leads to induction of the ND10 components PML and Sp100, but that repression by ND10 bodies is unlikely to contribute to KSHV latency establishment. Instead, we uncover an unexpected role for soluble Sp100 protein, which is efficiently and permanently relocalized from nucleoplasmic and chromatin-associated fractions into the insoluble matrix. We show that LANA expression is sufficient to induce Sp100 relocalization, likely via mediating SUMOylation of Sp100. Furthermore, we demonstrate that depletion of soluble Sp100 occurs precisely when repressive H3K27me3 marks first accumulate on viral genomes, and that knock-down of Sp100 (but not PML or Daxx) facilitates H3K27me3 acquisition. Collectively, our data support a model in which non-ND10 resident Sp100 acts as a negative regulator of polycomb repressive complex-2 (PRC2) recruitment, and suggest that KSHV may actively escape ND10 silencing mechanisms to promote establishment of latent chromatin.
    PLoS Pathogens 07/2014; 10(7):e1004274. · 8.14 Impact Factor

Full-text (2 Sources)

Download
6 Downloads
Available from
Jul 4, 2014