Maximum a posteriori video super-resolution using a new multichannel image prior.

Faculty of Physics, Department of Electronics, Computers, Telecommunications and Control, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, 15784 Athens, Greece.
IEEE Transactions on Image Processing (Impact Factor: 3.11). 06/2010; 19(6):1451-64. DOI: 10.1109/TIP.2010.2042115
Source: DBLP

ABSTRACT Super-resolution (SR) is the term used to define the process of estimating a high-resolution (HR) image or a set of HR images from a set of low-resolution (LR) observations. In this paper we propose a class of SR algorithms based on the maximum a posteriori (MAP) framework. These algorithms utilize a new multichannel image prior model, along with the state-of-the-art single channel image prior and observation models. A hierarchical (two-level) Gaussian nonstationary version of the multichannel prior is also defined and utilized within the same framework. Numerical experiments comparing the proposed algorithms among themselves and with other algorithms in the literature, demonstrate the advantages of the adopted multichannel approach.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on the application of Optical Flow (OF) and state-of-the art multi-frame Super-Resolution (SR) algorithms to imagery that models space objects (SOs). Specifically, we demonstrate the ability to track SOs through sequences consisting of tens of images using different OF algorithms and show dependence of the tracking accuracy on illumination condition changes and on the values of pixel displacements between neighboring images. Additionally, we demonstrate spatial acuity enhancement of the pixel limited resolution of SO motion imagery by applying a novel SR algorithm accounting for OF errors.
    SPIE Defense, Security, and Sensing; 05/2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lung 4D-CT plays an important role in lung cancer radiotherapy for tumor localization and treatment planning. In lung 4D-CT data, the resolution in the slice direction is often much lower than the in-plane resolution. For multi-plane display, isotropic resolution is necessary, but the commonly used interpolation operation will blur the images. In this paper, we present a registration based method for super resolution enhancement of the 4D-CT multi-plane images. Our working premise is that the low-resolution images of different phases at the corresponding position can be regarded as input "frames" to reconstruct high resolution images. First, we employ the Demons registration algorithm to estimate the motion field between different "frames". Then, the projections onto convex sets (POCS) approach is employed to reconstruction high-resolution lung images. We show that our method can get clearer lung images and enhance image structure, compared with the cubic spline interpolation and back projection method.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Super-resolution, the process of obtaining one or more high-resolution images from one or more low-resolution observations, has been a very attractive research topic over the last two decades. It has found practical applications in many real-world problems in different fields, from satellite and aerial imaging to medical image processing, to facial image analysis, text image analysis, sign and number plates reading, and biometrics recognition, to name a few. This has resulted in many research papers, each developing a new super-resolution algorithm for a specific purpose. The current comprehensive survey provides an overview of most of these published works by grouping them in a broad taxonomy. For each of the groups in the taxonomy, the basic concepts of the algorithms are first explained and then the paths through which each of these groups have evolved are given in detail, by mentioning the contributions of different authors to the basic concepts of each group. Furthermore, common issues in super-resolution algorithms, such as imaging models and registration algorithms, optimization of the cost functions employed, dealing with color information, improvement factors, assessment of super-resolution algorithms, and the most commonly employed databases are discussed.
    Machine Vision and Applications 08/2014; 25(6):1423-1468. DOI:10.1007/s00138-014-0623-4 · 1.44 Impact Factor

Full-text (5 Sources)

Available from
Jun 6, 2014