Antioxidant therapies for traumatic brain injury

Spinal Cord & Brain Injury Research Center, University of Kentucky Medical Center, Lexington, Kentucky 40536, USA.
Journal of the American Society for Experimental NeuroTherapeutics (Impact Factor: 3.88). 01/2010; 7(1):51-61. DOI: 10.1016/j.nurt.2009.10.021
Source: PubMed

ABSTRACT Free radical-induced oxidative damage reactions, and membrane lipid peroxidation (LP), in particular, are among the best validated secondary injury mechanisms in preclinical traumatic brain injury (TBI) models. In addition to the disruption of the membrane phospholipid architecture, LP results in the formation of cytotoxic aldehyde-containing products that bind to cellular proteins and impair their normal functions. This article reviews the progress of the past three decades in regard to the preclinical discovery and attempted clinical development of antioxidant drugs designed to inhibit free radical-induced LP and its neurotoxic consequences via different mechanisms including the O(2)(*-) scavenger superoxide dismutase and the lipid peroxidation inhibitor tirilazad. In addition, various other antioxidant agents that have been shown to have efficacy in preclinical TBI models are briefly presented, such as the LP inhibitors U83836E, resveratrol, curcumin, OPC-14177, and lipoic acid; the iron chelator deferoxamine and the nitroxide-containing antioxidants, such as alpha-phenyl-tert-butyl nitrone and tempol. A relatively new antioxidant mechanistic strategy for acute TBI is aimed at the scavenging of aldehydic LP byproducts that are highly neurotoxic with "carbonyl scavenging" compounds. Finally, it is proposed that the most effective approach to interrupt posttraumatic oxidative brain damage after TBI might involve the combined treatment with mechanistically complementary antioxidants that simultaneously scavenge LP-initiating free radicals, inhibit LP propagation, and lastly remove neurotoxic LP byproducts.

Download full-text


Available from: Ayman Mustafa, Aug 31, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synucleins are small prone to aggregate proteins associated with several neurodegenerative diseases (NDDs), however their role in traumatic brain injury (TBI) is an emerging area of investigation. Using in vitro scratch injury model and in vivo mouse weight-drop model we have found that the injury causes alterations in the expression and localization of synucleins near the damaged area. Before injury, α-synuclein is diffuse in the cytoplasm of neurons and γ-synuclein is both in the cytoplasm and nucleus of oligodendrocytes. After the scratch injury of the mixed neuronal and glial culture, α-synuclein forms punctate structures in the cytoplasm of neurons and γ-synuclein is almost completely localized to the nucleus of the oligodendrocytes. Furthermore, the amount of post-translationally modified Met38-oxidized γ-synuclein is increased 3.8 fold 24 hour after the scratch. α- and γ-Synuclein containing cells increased in the initially cell free scratch zone up to 24 hour after the scratch. Intracellular expression and localization of synucleins is also changed in a mouse model of focal closed head injury, using a standardized weight drop device. γ-Synuclein goes from diffuse to punctate staining in a piriform cortex near the amygdala, which may reflect the first steps in the formation of deposits/inclusions. Surprisingly, oxidized γ-synuclein co-localizes with cofilin-actin rods in the thalamus, which are absent in all other regions of the brain. These structures reach their peak amounts 7 days after injury. The changes in γ-synuclein localization are accompanied by injury-induced alterations in the morphology of both astrocytes and neurons.
    Molecular and Cellular Neuroscience 10/2014; DOI:10.1016/j.mcn.2014.10.005 · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Under normal conditions, most of the central nervous system (CNS) is protected by the blood brain barrier (BBB) from systemic inflammation progression and from the infiltration of immune cells. As a consequence, the CNS developed an original way to provide surveillance, defense and repair, which relies on the complex process of neuroinflammation. Despite tight regulation, neuroinflammation is frequently the cause of irreversible nerve cell loss but it is also where the solution lies. Specific immune crosstalk taking place in the CNS needs to be decoded in order to identify the best therapeutic strategies aimed at helping the CNS restore homeostasis in difficult conditions such as is the case in neurodegenerative disorders. This review deals with the double-edged sword nature of neuroinflammation and the use of resveratrol in various models as one of the most promising therapeutic molecules for preventing the consequences of nerve cell auto-destruction.
    Current Pharmaceutical Biotechnology 06/2014; DOI:10.2174/1389201015666140617101332 · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reactive oxygen species (ROS) have been implicated in various types of CNS damage, including stroke. We used a cultured astrocyte model to explore mechanisms of survival of CNS cells following ROS damage. We found that pretreatment with leukemia inhibitory factor (LIF) preserves astrocytes exposed to toxic levels of t-BHP by inhibiting an increase in intracellular ROS following t-BHP treatment. Astrocytes lacking functional Stat3 did not benefit from the pro-survival or antioxidant effects of LIF. Inhibition of mitochondrial uncoupling protein 2 (UCP2) using a chemical inhibitor or siRNA abrogates the prosurvival effects of LIF, indicating a critical role for UCP2 in modulation of mitochondrial ROS production in survival following ROS exposure. LIF treatment of astrocytes results in increased UCP2 mRNA that is accompanied by an increase in Stat3 binding to the UCP2 promoter region. Although treatment with LIF alone did not increase UCP2 protein, a combination of LIF treatment and ROS stress led to increased UCP2 protein levels. We conclude that LIF protects astrocytes from ROS-induced death by increasing UCP2 mRNA, allowing cells to respond to ROS stress by rapidly producing UCP2 protein that ultimately decreases endogenous mitochondrial ROS production. GLIA 2013.
    Glia 02/2014; 62(2). DOI:10.1002/glia.22594 · 5.47 Impact Factor