Article

Antioxidant therapies for traumatic brain injury.

Spinal Cord & Brain Injury Research Center, University of Kentucky Medical Center, Lexington, Kentucky 40536, USA.
Journal of the American Society for Experimental NeuroTherapeutics (Impact Factor: 3.88). 01/2010; 7(1):51-61. DOI: 10.1016/j.nurt.2009.10.021
Source: PubMed

ABSTRACT Free radical-induced oxidative damage reactions, and membrane lipid peroxidation (LP), in particular, are among the best validated secondary injury mechanisms in preclinical traumatic brain injury (TBI) models. In addition to the disruption of the membrane phospholipid architecture, LP results in the formation of cytotoxic aldehyde-containing products that bind to cellular proteins and impair their normal functions. This article reviews the progress of the past three decades in regard to the preclinical discovery and attempted clinical development of antioxidant drugs designed to inhibit free radical-induced LP and its neurotoxic consequences via different mechanisms including the O(2)(*-) scavenger superoxide dismutase and the lipid peroxidation inhibitor tirilazad. In addition, various other antioxidant agents that have been shown to have efficacy in preclinical TBI models are briefly presented, such as the LP inhibitors U83836E, resveratrol, curcumin, OPC-14177, and lipoic acid; the iron chelator deferoxamine and the nitroxide-containing antioxidants, such as alpha-phenyl-tert-butyl nitrone and tempol. A relatively new antioxidant mechanistic strategy for acute TBI is aimed at the scavenging of aldehydic LP byproducts that are highly neurotoxic with "carbonyl scavenging" compounds. Finally, it is proposed that the most effective approach to interrupt posttraumatic oxidative brain damage after TBI might involve the combined treatment with mechanistically complementary antioxidants that simultaneously scavenge LP-initiating free radicals, inhibit LP propagation, and lastly remove neurotoxic LP byproducts.

Full-text

Available from: Ayman Mustafa, Aug 31, 2014
0 Followers
 · 
132 Views
  • Source
    Biomarkers of Brain Injury and Neurological Disorders, Edited by Wang, Zhang, Kobeissy, 01/2014: chapter 4;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain and spinal cord are implicated in incidences of two of the most severe injuries of central nervous system (CNS). Traumatic brain injury (TBI) is a devastating neurological deficit involving primary and secondary injury cascades. The primary and secondary mechanisms include complex consequences of activation of proinflammatory cytokines, cerebral edema, upregulation of NF-κ β, disruption of blood-brain barrier (BBB), and oxidative stress. Spinal cord injury (SCI) includes primary and secondary injury cascades. Primary injury leads to secondary injury in which generation of free radicals and oxidative or nitrative damage play an important pathophysiological role. The indoleamine melatonin is a hormone secreted or synthesized by pineal gland in the brain which helps to regulate sleep and wake cycle. Melatonin has been shown to be a versatile hormone having antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. It has a special characteristic of crossing BBB. Melatonin has neuroprotective role in the injured part of the CNS after TBI and SCI. A number of studies have successfully shown its therapeutic value as a neuroprotective agent in the treatment of neurodegenerative diseases. Here in this review we have compiled the literature supporting consequences of CNS injuries, TBI and SCI, and the protective role of melatonin in it.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuroprotective actions of the peroxisome proliferator-activated receptor-γ (PPARγ) agonists have been observed in various animal models of the brain injuries. In this study we examined the effects of a single dose of pioglitazone on oxidative and inflammatory parameters as well as on neurodegeneration and the edema formation in the rat parietal cortex following traumatic brain injury (TBI) induced by the lateral fluid percussion injury (LFPI) method. Pioglitazone was administered in a dose of 1 mg/kg at 10 min after the brain trauma. Animals of the control group were sham-operated and injected by vehicle. Rats were decapitated 24 h after LFPI and their parietal cortices were analyzed by biochemical and histological methods. Cortical edema was evaluated in rats sacrificed 48 h following TBI. Brain trauma caused statistically significant oxidative damage of lipids and proteins, an increase of glutathione peroxidase (GSH-Px) activity, the cyclooxygenase-2 (COX-2) overexpression, reactive astrocytosis, the microglia activation, neurodegeneration, and edema, but it did not influence the superoxide dismutase activity and the expressions of interleukin-1 beta, interleukin-6 and tumor necrosis factor-alpha in the rat parietal cortex. Pioglitazone significantly decreased the cortical lipid and protein oxidative damage, increased the GSH-Px activity and reduced microglial reaction. Although a certain degree of the TBI-induced COX-2 overexpression, neurodegeneration and edema decrease was detected in pioglitazone treated rats, it was not significant. In the injured animals, cortical reactive astrocytosis was unchanged by the tested PPARγ agonist. These findings demonstrate that pioglitazone, administered only in a single dose, early following LFPI, reduced cortical oxidative damage, increased antioxidant defense and had limited anti-inflammatory effect, suggesting the need for further studies of this drug in the treatment of TBI.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 01/2015; 59. DOI:10.1016/j.pnpbp.2015.01.003 · 4.03 Impact Factor