Immature animals have higher cellular density in the healing anterior cruciate ligament than adolescent or adult animals

Department of Orthopaedic Surgery, Children's Hospital of Boston, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.
Journal of Orthopaedic Research (Impact Factor: 2.97). 01/2010; 28(8):1100-6. DOI: 10.1002/jor.21070
Source: PubMed

ABSTRACT There has been recent interest in the biologic stimulation of anterior cruciate ligament (ACL) healing. However, the effect of age on the ability of ligaments to heal has not yet been defined. In this study, we hypothesized that skeletal maturity would significantly affect the cellular and vascular repopulation rate of an ACL wound site. Skeletally Immature (open physes), Adolescent (closing physes), and Adult (closed physes) Yucatan minipigs underwent bilateral ACL transection and suture repair using a collagen-platelet composite. The response to repair was evaluated histologically at 1, 2, and 4 weeks. All three groups of animals had completely populated the ACL wound site with fibroblasts at 1 week. The Immature animals had a higher cellular density in the wound site than the Adult animals at weeks 2 and 4. Cells in the Immature ligament wounds were larger and more ovoid than in the Adult wounds. There were no significant differences in the vascular density in the wound site. Animal age had a significant effect on the density of cells populating the ACL wound site. Whether this observed cellular difference has an effect on the later biomechanical function of the repaired ACL requires further study.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Bio-enhanced ACL repair, where the suture repair is supplemented with a biological scaffold, is a promising novel technique to stimulate healing after ACL rupture. However, the histological properties of a successfully healing ACL and how they relate to the mechanical properties have not been fully described.
    11/2013; 1(6). DOI:10.1177/2325967113512457
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There have been many advances in anterior cruciate ligament reconstruction (ACLR) techniques incorporating biological treatment. The aim of this review is to discuss the recent contributions that may enlighten our understanding of biological therapies for anterior cruciate ligament (ACL) injuries and improve management decisions involving these enhancement options. Three main biological procedures will be analyzed: bio-enhanced ACL repair, bio-enhanced ACLR scrutinized under the four basic principles of tissue engineering (scaffolds, cell sources, growth factors/cytokines including platelet-rich plasma, and mechanical stimuli), and remnant-preserving ACLR. There is controversial information regarding remnant-preserving ACLR, since different procedures are grouped under the same designation. A new definition for remnant-preserving ACLR surgery is proposed, dividing it into its three major procedures (selective bundle augmentation, augmentation, and nonfunctional remnant preservation); also, an ACL lesion pattern classification and a treatment algorithm, which will hopefully standardize these terms and procedures for future studies, are presented.
    Current Reviews in Musculoskeletal Medicine 07/2014; DOI:10.1007/s12178-014-9228-9
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Musculoskeletal pathology of the knee commonly occurs with aging and as a result of injury. The incidence of anterior cruciate ligament (ACL) injuries continues to increase annually, and may precede the eventual onset of osteoarthritis (OA), a debilitating and prevalent disease characterized by cartilage degeneration. Early detection of OA remains elusive, with current imaging methods lacking adequate sensitivity to detect early pathologic cartilage changes. We used mid- and near- infrared (IR) spectroscopy through arthroscopic-based fiber-optic devices to assess cartilage damage and differentiate tendon from ligament. Mid-IR spectroscopy is characterized by distinct bands and low penetration depth (< 10 μm) and near-IR spectroscopy is characterized by complex overlapping bands and greater penetration depths (< 1 cm). We have found that combined mid- and near-IR analysis greatly extends the information available through either in the analysis of soft tissues, including cartilage, ligaments and tendons. We discuss here basic science studies and the potential for translation to clinical research with novel arthroscopic probes.
    Proceedings of SPIE - The International Society for Optical Engineering 02/2014; DOI:10.1117/12.2047473 · 0.20 Impact Factor

Full-text (2 Sources)

Available from
Jun 2, 2014

Similar Publications