Article

Cytosine methylation dysregulation in neonates following intrauterine growth restriction.

Department of Obstetrics, Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York, United States of America.
PLoS ONE (Impact Factor: 3.53). 01/2010; 5(1):e8887. DOI: 10.1371/journal.pone.0008887
Source: PubMed

ABSTRACT Perturbations of the intrauterine environment can affect fetal development during critical periods of plasticity, and can increase susceptibility to a number of age-related diseases (e.g., type 2 diabetes mellitus; T2DM), manifesting as late as decades later. We hypothesized that this biological memory is mediated by permanent alterations of the epigenome in stem cell populations, and focused our studies specifically on DNA methylation in CD34+ hematopoietic stem and progenitor cells from cord blood from neonates with intrauterine growth restriction (IUGR) and control subjects.
Our epigenomic assays utilized a two-stage design involving genome-wide discovery followed by quantitative, single-locus validation. We found that changes in cytosine methylation occur in response to IUGR of moderate degree and involving a restricted number of loci. We also identify specific loci that are targeted for dysregulation of DNA methylation, in particular the hepatocyte nuclear factor 4alpha (HNF4A) gene, a well-known diabetes candidate gene not previously associated with growth restriction in utero, and other loci encoding HNF4A-interacting proteins.
Our results give insights into the potential contribution of epigenomic dysregulation in mediating the long-term consequences of IUGR, and demonstrate the value of this approach to studies of the fetal origin of adult disease.

0 Bookmarks
 · 
99 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective In epidemiological studies, adverse early-life conditions associate with subsequent cardiometabolic disease. Hypothesized causes include maternal malnutrition, foetal glucocorticoid overexposure and reduced growth factors. Animal studies suggest a role for epigenetic processes in maintaining early-life effects into adulthood, but human relevance is unknown. We aimed to investigate relationships between an unbalanced maternal diet in pregnancy, neonatal and adult anthropometric variables with methylation at key genes controlling tissue glucocorticoid action and foetal growth. DesignWe studied 34 individuals aged 40 from the Motherwell cohort study whose mothers ate an unbalanced diet in pregnancy, previously linked with elevated blood pressure and cortisol in adult offspring. MeasurementsDNA methylation at 11β-hydroxysteroid dehydrogenase type 2 (HSD2), glucocorticoid receptor (GR) and insulin-like growth factor 2 (IGF2) was measured by pyrosequencing on buffy coat DNA. ResultsMethylation at specific CpGs in the HSD2 promoter and at one of the IGF2 differentially methylated regions (H19 ICR) correlated with neonatal anthropometric variables. CpG methylation within HSD2, GR and H19 ICR was positively associated with increased adiposity and blood pressure in adulthood. Methylation at GR (exon 1F) was increased in offspring of mothers with the most unbalanced diets in pregnancy. Conclusions Alterations in DNA methylation at genes important in regulating circulating cortisol levels, tissue glucocorticoid action, blood pressure and foetal growth are present in adulthood in association with both early-life parameters and cardiometabolic risk factors. The data indicate a persisting epigenetic link between early-life maternal diet and/or foetal growth and cardiovascular disease risk in humans.
    Clinical Endocrinology 12/2012; 77(6). · 3.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To examine the environmental effects on cytosine methylation of preterm infant's DNA, because early life experiences are considered to influence the physiological and mental health of an individual through epigenetic modification of DNA.
    BMJ Open 07/2014; 4(7):e005318. · 2.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extreme fetal growth is associated with increased susceptibility to a range of adult diseases through an unknown mechanism of cellular memory. We tested whether heritable epigenetic processes in long-lived CD34(+) haematopoietic stem/progenitor cells showed evidence for re-programming associated with the extremes of fetal growth. Here we show that both fetal growth restriction and over-growth are associated with global shifts towards DNA hypermethylation, targeting cis-regulatory elements in proximity to genes involved in glucose homeostasis and stem cell function. We find a sexually dimorphic response; intrauterine growth restriction is associated with substantially greater epigenetic dysregulation in males, whereas large for gestational age growth predominantly affects females. The findings are consistent with extreme fetal growth interacting with variable fetal susceptibility to influence cellular ageing and metabolic characteristics through epigenetic mechanisms, potentially generating biomarkers that could identify infants at higher risk for chronic disease later in life.
    Nature Communications 01/2014; 5:5187. · 10.74 Impact Factor

Full-text (3 Sources)

Download
7 Downloads
Available from
Nov 11, 2014