Article

Brainstem Serotonergic Deficiency in Sudden Infant Death Syndrome

Department of Pathology, Children's Hospital Boston, 300 Longwood Ave, Boston, MA 02115, USA.
JAMA The Journal of the American Medical Association (Impact Factor: 30.39). 02/2010; 303(5):430-7. DOI: 10.1001/jama.2010.45
Source: PubMed

ABSTRACT Sudden infant death syndrome (SIDS) is postulated to result from abnormalities in brainstem control of autonomic function and breathing during a critical developmental period. Abnormalities of serotonin (5-hydroxytryptamine [5-HT]) receptor binding in regions of the medulla oblongata involved in this control have been reported in infants dying from SIDS.
To test the hypothesis that 5-HT receptor abnormalities in infants dying from SIDS are associated with decreased tissue levels of 5-HT, its key biosynthetic enzyme (tryptophan hydroxylase [TPH2]), or both.
Autopsy study conducted to analyze levels of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA); levels of TPH2; and 5-HT(1A) receptor binding. The data set was accrued between 2004 and 2008 and consisted of 41 infants dying from SIDS (cases), 7 infants with acute death from known causes (controls), and 5 hospitalized infants with chronic hypoxia-ischemia.
Serotonin and metabolite tissue levels in the raphé obscurus and paragigantocellularis lateralis (PGCL); TPH2 levels in the raphé obscurus; and 5-HT(1A) binding density in 5 medullary nuclei that contain 5-HT neurons and 5 medullary nuclei that receive 5-HT projections.
Serotonin levels were 26% lower in SIDS cases (n = 35) compared with age-adjusted controls (n = 5) in the raphé obscurus (55.4 [95% confidence interval {CI}, 47.2-63.6] vs 75.5 [95% CI, 54.2-96.8] pmol/mg protein, P = .05) and the PGCL (31.4 [95% CI, 23.7-39.0] vs 40.0 [95% CI, 20.1-60.0] pmol/mg protein, P = .04). There was no evidence of excessive 5-HT degradation assessed by 5-HIAA levels, 5-HIAA:5-HT ratio, or both. In the raphé obscurus, TPH2 levels were 22% lower in the SIDS cases (n = 34) compared with controls (n = 5) (151.2% of standard [95% CI, 137.5%-165.0%] vs 193.9% [95% CI, 158.6%-229.2%], P = .03). 5-HT(1A) receptor binding was 29% to 55% lower in 3 medullary nuclei that receive 5-HT projections. In 4 nuclei, 3 of which contain 5-HT neurons, there was a decrease with age in 5-HT(1A) receptor binding in the SIDS cases but no change in the controls (age x diagnosis interaction). The profile of 5-HT and TPH2 abnormalities differed significantly between the SIDS and hospitalized groups (5-HT in the raphé obscurus: 55.4 [95% CI, 47.2-63.6] vs 85.6 [95% CI, 61.8-109.4] pmol/mg protein, P = .02; 5-HT in the PGCL: 31.4 [95% CI, 23.7-39.0] vs 71.1 [95% CI, 49.0-93.2] pmol/mg protein, P = .002; TPH2 in the raphé obscurus: 151.2% [95% CI, 137.5%-165.0%] vs 102.6% [95% CI, 58.7%-146.4%], P = .04).
Compared with controls, SIDS was associated with lower 5-HT and TPH2 levels, consistent with a disorder of medullary 5-HT deficiency.

Download full-text

Full-text

Available from: Henry Franklin Krous, Jul 04, 2015
2 Followers
 · 
215 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Serotonergic dysfunction compromises ventilatory chemosensitivity and may enhance vulnerability to pathologies such as the Sudden Infant Death Syndrome (SIDS). We have shown raphé contributions to central chemosensitivity involving serotonin (5-HT)-and γ-aminobutyric acid (GABA)-mediated mechanisms. We tested the hypothesis that mild intermittent hypercapnia (IHc) induces respiratory plasticity, due in part to strengthening of GABA mechanisms. Rat pups were IHc-pretreated (8 consecutive cycles; 5min 5% CO2 - air, 10min air) or constant normocapnia-pretreated as a control, each day for 5 consecutive days beginning at P12. We subsequently assessed CO2 responsiveness using the in situ perfused brainstem preparation. Hypercapnic responses were determined with and without pharmacological manipulation. Results show IHc-pretreatment induces plasticity sufficient for responsiveness despite removal of otherwise critical ketanserin-sensitive mechanisms. Responsiveness following IHc-pretreatment was absent if ketanserin was combined with GABAergic antagonism, indicating that plasticity depends on GABAergic mechanisms. We propose that IHc-induced plasticity could reduce the severity of reflex dysfunctions underlying pathologies such as SIDS.
    Respiratory Physiology & Neurobiology 05/2014; 200. DOI:10.1016/j.resp.2014.05.005 · 1.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brainstem central chemoreceptors are critical to the hypercapnic ventilatory response, but their location and identity are poorly understood. When studied in vitro, serotonin synthesizing (5-HT) neurons within the rat medullary raphe are intrinsically stimulated by CO2/acidosis. The contributions of these neurons to central chemosensitivity in vivo, however, are controversial. Lacking is documentation of CO2-sensitive 5-HT neurons in intact experimental preparations and understanding of their spatial and proportional distribution. Here we test the hypothesis that 5-HT neurons in the rat medullary raphe are sensitive to arterial hypercapnia. We use extracellular recording and hypercapnic challenge of spontaneously active medullary raphe neurons in the unanesthetized in situ perfused decerebrate brainstem preparation to assess chemosensitivity of individual cells. Juxtacellular labeling of a subset of recorded neurons and subsequent immunohistochemistry for the 5-HT synthesizing enzyme tryptophan hydroxylase identify or exclude this neurotransmitter phenotype in electrophysiologically characterized chemosensitive and insensitive cells. We show that the medullary raphe houses a heterogeneous population, including chemosensitive and insensitive 5-HT neurons. Of 124 recorded cells, 16 cells were juxtacellularly filled, visualized, and immunohistochemically identified as 5-HT-synthesizing, based on TPH immunoreactivity (TPH-ir). 44% of 5-HT cells were CO2-stimulated (increased firing rate with hypercapnia), while 56% were unstimulated. Our results demonstrate that medullary raphe neurons are heterogeneous and clearly include a subset of 5-HT neurons that are excited by arterial hypercapnia. Together with data identifying intrinsically CO2-sensitive 5-HT neurons in vitro, these results support a role for such cells as central chemoreceptors in the intact system.
    Journal of Neurophysiology 09/2013; 110(11). DOI:10.1152/jn.00288.2013 · 3.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recurrent apneas are important causes of hospitalization and morbidity in newborns. Gestational stress (GS) compromises fetal brain development. Maternal stress and anxiety during gestation are linked to respiratory disorders in newborns; however, the mechanisms remain unknown. Here, we tested the hypothesis that repeated activation of the neuroendocrine response to stress during gestation is sufficient to disrupt the development of respiratory control and augment the occurrence of apneas in newborn rats. Pregnant dams were displaced and exposed to predator odor from days 9 to 19 of gestation. Control dams were undisturbed. Experiments were performed on male and female rats aged between 0 and 4 d old. Apnea frequency decreased with age but was consistently higher in stressed pups than controls. At day 4, GS augmented the proportion of apneas with O(2) desaturations by 12%. During acute hypoxia (12% O(2)), the reflexive increase in breathing augmented with age; however, this response was lower in stressed pups. Instability of respiratory rhythm recorded from medullary preparations decreased with age but was higher in stressed pups than controls. GS reduced medullary serotonin (5-HT) levels in newborn pups by 32%. Bath application of 5-HT and injection of 8-OH-DPAT [(±)-8-hydroxy-2-di-(n-propylamino) tetralin hydrobromide; 5-HT(1A) agonist; in vivo] reduced respiratory instability and apneas; these effects were greater in stressed pups than controls. Sex-specific effects were observed. We conclude that activation of the stress response during gestation is sufficient to disrupt respiratory control development and promote pathological apneas in newborn rats. A deficit in medullary 5-HT contributes to these effects.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 01/2013; 33(2):563-73. DOI:10.1523/JNEUROSCI.1214-12.2013 · 6.75 Impact Factor