Article

Cancer Biomarkers Defined by Autoantibody Signatures to Aberrant O-Glycopeptide Epitopes

Center for Glycomics, Departments of Cellular and Molecular Medicine and Oral Diagnostics, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark.
Cancer Research (Impact Factor: 9.28). 02/2010; 70(4):1306-13. DOI: 10.1158/0008-5472.CAN-09-2893
Source: PubMed

ABSTRACT Autoantibodies to cancer antigens hold promise as biomarkers for early detection of cancer. Proteins that are aberrantly processed in cancer cells are likely to present autoantibody targets. The extracellular mucin MUC1 is overexpressed and aberrantly glycosylated in many cancers; thus, we evaluated whether autoantibodies generated to aberrant O-glycoforms of MUC1 might serve as sensitive diagnostic biomarkers for cancer. Using an antibody-based glycoprofiling ELISA assay, we documented that aberrant truncated glycoforms were not detected in sera of cancer patients. An O-glycopeptide microarray was developed that detected IgG antibodies to aberrant O-glycopeptide epitopes in patients vaccinated with a keyhole limpet hemocyanin-conjugated truncated MUC1 peptide. We detected cancer-associated IgG autoantibodies in sera from breast, ovarian, and prostate cancer patients against different aberrent O-glycopeptide epitopes derived from MUC1. These autoantibodies represent a previously unaddressed source of sensitive biomarkers for early detection of cancer. The methods we have developed for chemoenzymatic synthesis of O-glycopeptides on microarrays may allow for broader mining of the entire cancer O-glycopeptidome.

0 Followers
 · 
171 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anti-glycan antibodies are an abundant subpopulation of serum antibodies with critical functions in many immune processes. Changes in the levels of these antibodies can occur with the onset of disease, exposure to pathogens, or vaccination. As a result, there has been significant interest in exploiting anti-glycan antibodies as biomarkers for many diseases. Serum contains a mixture of anti-glycan antibodies that can recognize the same antigen, and competition for binding can potentially influence the detection of antibody subpopulations that are more relevant to disease processes. The most abundant antibody isotypes in serum are IgG, IgM, and IgA, but little is known regarding how these different isotypes compete for the same glycan antigen. In this study, we developed a multiplexed glycan microarray assay and applied it to evaluate how different isotypes of anti-glycan antibodies (IgA, IgG, and IgM) compete for printed glycan antigens. While IgG and IgA antibodies typically outcompete IgM for peptide or protein antigens, we found that IgM outcompete IgG and IgA for many glycan antigens. To illustrate the importance of this effect, we provide evidence that IgM competition can account for the unexpected observation that IgG of certain antigen specificities appear to be preferentially transported from mothers to fetuses. We demonstrate that IgM in maternal sera compete with IgG resulting in lower than expected IgG signals. Since cord blood contains very low levels of IgM, competition only affects maternal IgG signals, making it appear as though certain IgG antibodies are higher in cord blood than matched maternal blood. Taken together, the results highlight the importance of competition for studies involving anti-glycan antibodies.
    PLoS ONE 01/2015; 10(3):e0119298. DOI:10.1371/journal.pone.0119298 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When citrate ligands-capped gold nanoparticles are mixed with blood sera, a protein corona is formed on the nanoparticle surface due to the adsorption of various proteins in the blood to the nanoparticles. Using a two-step gold nanoparticle-enabled dynamic light scattering assay, we discovered that the amount of human immunoglobulin G (IgG) in the gold nanoparticle protein corona is increased in prostate cancer patients compared to non-cancer controls. Two pilot studies conducted on blood serum samples collected at Florida Hospital and obtained from Prostate Cancer Biorespository Network (PCBN) revealed that the test has a 90-95% specificity and 50% sensitivity in detecting early stage prostate cancer, representing a significant improvement over the current PSA test. The increased amount of human IgG found in the protein corona is believed to be associated with the autoantibodies produced in cancer patients as part of the immunodefense against tumor. Proteomic analysis of the nanoparticle protein corona revealed molecular profile differences between cancer and non-cancer serum samples. Autoantibodies and natural antibodies produced in cancer patients in response to tumorigenesis have been found and detected in the blood of many cancer types. The test may be applicable for early detection and risk assessment of a broad spectrum of cancer. This new blood test is simple, low cost, requires only a few drops of blood sample, and the results are obtained within minutes. The test is well suited for screening purpose. More extensive studies are being conducted to further evaluate and validate the clinical potential of the new test.
    ACS Applied Materials & Interfaces 03/2015; 7(12). DOI:10.1021/acsami.5b00371 · 5.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: All of life is regulated by complex and organized chemical reactions that help dictate when to grow, to move, to reproduce, and to die. When these processes go awry, or are interrupted by pathological agents, diseases such as cancer, autoimmunity, or infections can result. Cytokines, chemokines, growth factors, adipokines, and other chemical moieties make up a vast subset of these chemical reactions that are altered in disease states, and monitoring changes in these molecules could provide for the identification of disease biomarkers. From the first identification of carcinoembryonic antigen, to the discovery of prostate-specific antigen, to numerous others described within, biomarkers of disease are detectable in a plethora of sample types. The growing number of biomarkers for infection, autoimmunity, and cancer allow for increasingly early detection, to identification of novel drug targets, to prognostic indicators of disease outcome. However, more and more studies are finding that a single cytokine or growth factor is insufficient as a true disease biomarker and that a more global perspective is needed to understand true disease biology. Such a broad view requires a multiplexed platform for chemical detection, and antibody arrays meet and exceed this need by performing this detection in a high-throughput fashion. Herein, we will discuss how antibody arrays have evolved, and how they have helped direct new drug target design, helped identify therapeutic disease markers, and helped in earlier disease detection. From asthma to renal disease, and neurological dysfunction to immunologic disorders, antibody arrays afford a bright future for new biomarker discovery.
    Advances in clinical chemistry 02/2015; DOI:10.1016/bs.acc.2015.01.002 · 4.30 Impact Factor

Full-text (2 Sources)

Download
29 Downloads
Available from
May 15, 2014