Article

The reliability of neuroanatomy as a predictor of eloquence: a review.

Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-7049, USA.
Neurosurgical FOCUS (Impact Factor: 2.14). 02/2010; 28(2):E3. DOI: 10.3171/2009.11.FOCUS09239
Source: PubMed

ABSTRACT The adjacency of intracranial pathology to canonical regions of eloquence has long been considered a significant source of potential morbidity in the neurosurgical care of patients. Yet, several reports exist of patients who undergo resection of gliomas or other intracranial pathology in eloquent regions without adverse effects. This raises the question of whether anatomical and intracranial location can or should be used as a means of estimating eloquence. In this review, the authors systematically evaluate the factors that are known to affect anatomical-functional relationships, including anatomical, functional, pathology-related, and modality-specific sources of variability. This review highlights the unpredictability of functional eloquence based on anatomical features alone and the fact that patients should not be considered ineligible for surgical intervention based on anatomical considerations alone. Rather, neurosurgeons need to take advantage of modern technology and mapping techniques to create individualized maps and management plans. An individualized approach allows one to expand the number of patients who are considered for and who potentially may benefit from surgical intervention. Perhaps most importantly, an individualized approach to mapping patients with brain tumors ensures that the risk of iatrogenic functional injury is minimized while maximizing the extent of resection.

1 Bookmark
 · 
56 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECT: Recent neuroimaging and surgical results support the crucial role of white matter in mediating motor and higher-level processing within the frontal lobe, while suggesting the limited compensatory capacity after damage to subcortical structures. Consequently, an accurate knowledge of the anatomofunctional organization of the pathways running within this region is mandatory for planning safe and effective surgical approaches to different diseases. The aim of this dissection study was to improve the neurosurgeon's awareness of the subcortical anatomofunctional architecture for a lateral approach to the frontal region, to optimize both resection and postoperative outcome. METHODS: Ten human hemispheres (5 left, 5 right) were dissected according to the Klingler technique. Proceeding lateromedially, the main association and projection tracts as well as the deeper basal structures were identified. The authors describe the anatomy and the relationships among the exposed structures in both a systematic and topographical surgical perspective. Structural results were also correlated to the functional responses obtained during resections of infiltrative frontal tumors guided by direct cortico-subcortical electrostimulation with patients in the awake condition. RESULTS: The eloquent boundaries crucial for a safe frontal lobectomy or an extensive lesionectomy are as follows: 1) the motor cortex; 2) the pyramidal tract and premotor fibers in the posterior and posteromedial part of the surgical field; 3) the inferior frontooccipital fascicle and the superior longitudinal fascicle posterolaterally; and 4) underneath the inferior frontal gyrus, the head of the caudate nucleus, and the tip of the frontal horn of the lateral ventricle in the depth. CONCLUSIONS: Optimization of results following brain surgery, especially within the frontal lobe, requires a perfect knowledge of functional anatomy, not only at the cortical level but also with regard to subcortical white matter connectivity.
    Journal of Neurosurgery 09/2012; 117(6):1053-69. · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite technological advances, such as intraoperative MRI, intraoperative sensory and motor monitoring, and awake brain surgery, brain anatomy and its relationship with cranial landmarks still remains the basis of neurosurgery. Our objective is to describe the utility of anatomical knowledge of brain sulci and gyri in neurosurgery. This study was performed on 10 human adult cadaveric heads fixed in formalin and injected with colored silicone rubber. Additionally, using procedures done by the authors between June 2006 and June 2011, we describe anatomical knowledge of brain sulci and gyri used to manage brain lesions. Knowledge of the brain sulci and gyri can be used (a) to localize the craniotomy procedure, (b) to recognize eloquent areas of the brain, and (c) to identify any given sulcus for access to deep areas of the brain. Despite technological advances, anatomical knowledge of brain sulci and gyri remains essential to perform brain surgery safely and effectively.
    Journal of Clinical Neuroscience 08/2014; · 1.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Radiosurgical treatment of brain lesions near motor or language eloquent areas requires careful planning to achieve the optimal balance between effective dose prescription and preservation of function. Navigated brain stimulation (NBS) is the only non-invasive modality that allows the identification of functionally essential areas by electrical stimulation or inhibition of cortical neurons analogous to the gold-standard of intraoperative electrical mapping. To evaluate the feasibility of NBS data integration into the radiosurgical environment, and to analyze the influence of NBS data on the radiosurgical treatment planning for lesions near or within motor or language eloquent areas of the brain. Eleven consecutive patients with brain lesions in presumed motor or language eloquent locations eligible for radiosurgical treatment were mapped with NBS. The radiosurgical team prospectively analyzed the data transfer and classified the influence of the functional NBS information on the radiosurgical treatment planning using a standardized questionnaire. The semi-automatized data transfer to the radiosurgical planning workstation was flawless in all cases. The NBS data influenced the radiosurgical treatment planning procedure as follows: improved risk-benefit balancing in all cases, target contouring in 0 %, dose plan modification in 81.9 %, reduction of radiation dosage in 72.7 % and treatment indication in 63.7 % of the cases. NBS data integration into radiosurgical treatment planning is feasible. By mapping the spatial relationship between the lesion and functionally essential areas, NBS has the potential to improve radiosurgical planning safety for eloquently located lesions.
    Acta Neurochirurgica 04/2014; · 1.79 Impact Factor