Article

A Model of Redox Kinetics Implicates the Thiol Proteome in Cellular Hydrogen Peroxide Responses

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.
Antioxidants & Redox Signaling (Impact Factor: 7.67). 09/2010; 13(6):731-43. DOI: 10.1089/ars.2009.2968
Source: PubMed

ABSTRACT Hydrogen peroxide is appreciated as a cellular signaling molecule with second-messenger properties, yet the mechanisms by which the cell protects against intracellular H(2)O(2) accumulation are not fully understood. We introduce a network model of H(2)O(2) clearance that includes the pseudo-enzymatic oxidative turnover of protein thiols, the enzymatic actions of catalase, glutathione peroxidase, peroxiredoxin, and glutaredoxin, and the redox reactions of thioredoxin and glutathione. Simulations reproduced experimental observations of the rapid and transient oxidation of glutathione and the rapid, sustained oxidation of thioredoxin on exposure to extracellular H(2)O(2). The model correctly predicted early oxidation profiles for the glutathione and thioredoxin redox couples across a range of initial extracellular [H(2)O(2)] and highlights the importance of cytoplasmic membrane permeability to the cellular defense against exogenous sources of H(2)O(2). The protein oxidation profile predicted by the model suggests that approximately 10% of intracellular protein thiols react with hydrogen peroxide at substantial rates, with a majority of these proteins forming protein disulfides as opposed to protein S-glutathionylated adducts. A steady-state flux analysis predicted an unequal distribution of the intracellular anti-oxidative burden between thioredoxin-dependent and glutathione-dependent antioxidant pathways, with the former contributing the majority of the cellular antioxidant defense due to peroxiredoxins and protein disulfides.

Full-text

Available from: Melissa Kemp, Jun 06, 2014
0 Followers
 · 
121 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cysteine is one of the least abundant amino acids, yet it is frequently found as a highly conserved residue within functional (regulatory, catalytic or binding) sites in proteins. It is the unique chemistry of the thiol or thiolate group of cysteine that imparts functional sites with their specialized properties (e.g., nucleophilicity, high affinity metal binding, and/or ability to form disulfide bonds). Highlighted in this review are some of the basic biophysical and biochemical properties of cysteine groups and the equations that apply to them, particularly with respect to pKa and redox potential. Also summarized are the types of low molecular weight thiols present in high concentrations in most cells, as well as the ways in which modifications of cysteinyl residues can impart or regulate molecular functions important to cellular processes including signal transduction.
    Free Radical Biology and Medicine 11/2014; 80. DOI:10.1016/j.freeradbiomed.2014.11.013 · 5.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plasma medicine is a rapidly expanding new field of interdisciplinary research that combines physics, chemistry, biology, and medicine. Non-thermal atmospheric pressure plasma can be applied to living cells and tissues and has emerged as a novel technology for cancer therapy. Plasma has recently been shown to affect cells not only directly, but also by the indirect treatment of cells with previously prepared plasma-activated medium (PAM). The objective of this study was to demonstrate the inhibitory effects of PAM on A549 cell survival and elucidate the signaling mechanisms responsible for cell death. PAM maintained its ability to suppress cell viability for at least 1 week when stored at -80°C. The severity of PAM-triggered cell injury depended on the kind of culture medium used to prepare PAM, especially that with or without pyruvate. Hydrogen peroxide (H2O2) and/or its derived or cooperating reactive oxygen species reduced the mitochondrial membrane potential, down-regulated the expression of the anti-apoptotic protein Bcl2, activated poly(ADP-ribose) polymerase-1, and released apoptosis-inducing factor from mitochondria with endoplasmic reticulum stress. However, the activation of caspase 3/7 and attenuation of cell viability by the addition of caspase inhibitor were not observed. The accumulation of adenine 5'-diphosphoribose as a product of the above reactions activated transient receptor potential-melastatin 2, which elevated intracellular Ca(2+) levels and subsequently led to cell death. These results demonstrated that H2O2 and/or other reactive species in PAM disturbed the mitochondrial-nuclear network in cancer cells through a caspase-independent apoptotic pathway. Moreover, damage to the plasma membrane by H2O2-cooperating charged species not only induced apoptosis, but also increased its permeability to extracellular reactive species. These phenomena were also detected in PAM-treated HepG2 and MCF-7 cells. Copyright © 2014. Published by Elsevier Inc.
    Free Radical Biology and Medicine 11/2014; 79. DOI:10.1016/j.freeradbiomed.2014.11.014 · 5.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The thioredoxin system, which consists of a family of proteins, including thioredoxin (Trx), peroxiredoxin (Prx), and thioredoxin reductase (TrxR), plays a critical role in the defense against oxidative stress by removing harmful hydrogen peroxide (H2O2). Specifically, Trx donates electrons to Prx to remove H2O2 and then TrxR maintains the reduced Trx concentration with NADPH as the cofactor. Despite a great deal of kinetic information gathered on the removal of H2O2 by the Trx system from various sources/species, a mechanistic understanding of the associated enzymes is still not available. We address this issue by developing a thermodynamically consistent mathematical model of the Trx system which entails mechanistic details and provides quantitative insights into the kinetics of the TrxR and Prx enzymes. Consistent with experimental studies, the model analyses of the available data show that both enzymes operate by a ping-pong mechanism. The proposed mechanism for TrxR, which incorporates substrate inhibition by NADPH and intermediate protonation states, well describes the available data and accurately predicts the bell-shaped behavior of the effect of pH on the TrxR activity. Most importantly, the model also predicts the inhibitory effects of the reaction products (NADP(+) and Trx(SH)2) on the TrxR activity for which suitable experimental data are not available. The model analyses of the available data on the kinetics of Prx from mammalian sources reveal that Prx operates at very low H2O2 concentrations compared to their human parasite counterparts. Furthermore, the model is able to predict the dynamic overoxidation of Prx at high H2O2 concentrations, consistent with the available data. The integrated Prx-TrxR model simulations well describe the NADPH and H2O2 degradation dynamics and also show that the coupling of TrxR- and Prx-dependent reduction of H2O2 allowed ultrasensitive changes in the Trx concentration in response to changes in the TrxR concentration at high Prx concentrations. Thus, the model of this sort is very useful for integration into computational H2O2 degradation models to identify its role in physiological and pathophysiological functions. Copyright © 2014 Elsevier Inc. All rights reserved.
    Free Radical Biology and Medicine 10/2014; 78C(2):42-55. DOI:10.1016/j.freeradbiomed.2014.10.508 · 5.71 Impact Factor