Casimir forces in the time domain: Theory

Physical Review A (Impact Factor: 3.04). 01/2009; DOI: 10.1103/PhysRevA.80.012115
Source: OAI

ABSTRACT We present a method to compute Casimir forces in arbitrary geometries and for arbitrary materials based on the finite-difference time-domain (FDTD) scheme. The method involves the time evolution of electric and magnetic fields in response to a set of current sources, in a modified medium with frequency-independent conductivity. The advantage of this approach is that it allows one to exploit existing FDTD software, without modification, to compute Casimir forces. In this paper, we focus on the derivation, implementation choices, and essential properties of the time-domain algorithm, both considered analytically and illustrated in the simplest parallel-plate geometry.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This chapter discusses the relationships between current sources and the resulting electromagnetic waves in FDTD simulations. First, the "total-field/scattered-field" approach to creating incident plane waves is reviewed and seen to be a special case of the well-known principle of equivalence in electromagnetism: this can be used to construct "equivalent" current sources for any desired incident field, including waveguide modes. The effects of dispersion and discretization are discussed, and a simple technique to separate incident and scattered fields is described in order to compensate for imperfect equivalent currents. The important concept of the local density of states (LDOS) is reviewed, which elucidates the relationship between current sources and the resulting fields, including enhancement of the LDOS via mode cutoffs (Van Hove singularities) and resonant cavities (Purcell enhancement). We also address various other source techniques such as covering a wide range of frequencies and incident angles in a small number of simulations for waves incident on a periodic surface, sources to excite eigenmodes in rectangular supercells of periodic systems, moving sources, and thermal sources via a Monte Carlo/Langevin approach.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whether intentionally introduced to exert control over particles and macroscopic objects, such as for trapping or cooling, or whether arising from the quantum and thermal fluctuations of charges in otherwise neutral bodies, leading to unwanted stiction between nearby mechanical parts, electromagnetic interactions play a fundamental role in many naturally occurring processes and technologies. In this review, we survey recent progress in the understanding and experimental observation of optomechanical and quantum-fluctuation forces. Although both of these effects arise from exchange of electromagnetic momentum, their dramatically different origins, involving either real or virtual photons, lead to different physical manifestations and design principles. Specifically, we describe recent predictions and measurements of attractive and repulsive optomechanical forces, based on the bonding and antibonding interactions of evanescent waves, as well as predictions of modified and even repulsive Casimir forces between nanostructured bodies. Finally, we discuss the potential impact and interplay of these forces in emerging experimental regimes of micromechanical devices.
    Annalen der Physik 09/2014; · 1.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our previous article [Phys. Rev. A 80, 012115 (2009)] introduced a method to compute Casimir forces in arbitrary geometries and for arbitrary materials that was based on a finite-difference time-domain (FDTD) scheme. In this article, we focus on the efficient implementation of our method for geometries of practical interest and extend our previous proof-of-concept algorithm in one dimension to problems in two and three dimensions, introducing a number of new optimizations. We consider Casimir pistonlike problems with nonmonotonic and monotonic force dependence on sidewall separation, both for previously solved geometries to validate our method and also for new geometries involving magnetic sidewalls and/or cylindrical pistons. We include realistic dielectric materials to calculate the force between suspended silicon waveguides or on a suspended membrane with periodic grooves, also demonstrating the application of perfectly matched layer (PML) absorbing boundaries and/or periodic boundaries. In addition, we apply this method to a realizable three-dimensional system in which a silica sphere is stably suspended in a fluid above an indented metallic substrate. More generally, the method allows off-the-shelf FDTD software, already supporting a wide variety of materials (including dielectric, magnetic, and even anisotropic materials) and boundary conditions, to be exploited for the Casimir problem.
    Physical Review A 01/2010; 81(1):012119-012119. · 3.04 Impact Factor

Full-text (3 Sources)

Available from