Evolution of recognition of ligands from Gram-positive bacteria: similarities and differences in the TLR2-mediated response between mammalian vertebrates and teleost fish.

Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands.
The Journal of Immunology (Impact Factor: 5.52). 03/2010; 184(5):2355-68. DOI: 10.4049/jimmunol.0900990
Source: PubMed

ABSTRACT We investigated the role of the TLR2 receptor in the recognition of ligands from Gram-positive bacteria in fish. Comparative sequence analysis showed a highly conserved Toll/IL-1 receptor domain. Although the leucine-rich repeat domain was less conserved, the position of the critical peptidoglycan (PGN)-binding residues in the leucine-rich repeat domain of carp TLR2 were conserved. Transfection of human embryonic kidney 293 cells with TLR2 corroborated the ability of carp TLR2 to bind the prototypical mammalian vertebrate TLR2 ligands lipoteichoic acid (LTA) and PGN from Staphylococcus aureus. The synthethic triacylated lipopeptide N-palmitoyl-S-(2,3-bis(palmitoyloxy)-(2RS)-propyl)-(R)-Cys-(S)-Ser-(S)-Lys(4) trihydrochloride (Pam(3)CSK(4)) but not the diacylated lipopeptide macrophage-activating lipopeptide-2 (MALP-2) also activated TLR2 transfected human cells. We identified clear differences between the mammalian vertebrates and carp TLR2-mediated response. The use of the same ligands on carp macrophages indicated that fish cells require high concentrations of ligands from Gram-positive bacteria (LTA, PGN) for activation and signal transduction, react less strongly (Pam(3)CSK(4)) or do not react at all (MALP-2). Overexpression of TLR2 in carp macrophages confirmed TLR2 reactivity of the response to LTA and PGN, low-responsiveness to Pam(3)CSK(4) and nonresponsiveness to MALP-2. A putative relation with the apparent absence of accessory proteins such as CD14 from the fish TLR2-containing receptor complex is discussed. Moreover, activation of carp macrophages by PGN resulted in increased TLR2 gene expression and enhanced TLR2 mRNA stability, MAPK-p38 phosphorylation and increased radical production. Finally, we could show that NADPH oxidase-derived radicals and MAPK-p38 activation cooperatively determine the level of PGN-induced TLR2 gene expression. We propose that the H(2)O(2)-MAPK-p38-dependent axis is crucial for regulation of TLR2 gene expression in fish macrophages.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A comprehensive survey of channel catfish Toll-like receptors (TLRs) was undertaken following a genomic PCR approach based on degenerate primers. Twenty different TLRs were identified in channel catfish. Channel catfish TLR sequences were characterized by phylogenetic analysis based on their conserved Toll/interleukin-1 receptor domain and by in-depth analysis of leucine-rich repeat (LRR) motifs of the ligand binding extracellular domain (ECD). The catfish have representatives of all the TLR types defined in vertebrates with the exception of TLR6, TLR10, TLR11, TLR12, TLR13, TLR15, TLR23, and TLR24. Additionally, two new types were discovered: TLR25 and TLR26. TLR25 is also present in cyprinids, cichlids, plecoglossids, and adrianichthyids, suggesting its presence early in fish evolution. To date, TLR26 was found only in channel catfish. Like TLR18-23, TLR25 and TLR26 were not found in any other vertebrate classes and appear to be fish specific. Data mining using the catfish TLR sequences revealed that in addition to ictalurids and cyprinids, TLR4 is also present in salmonids. TLR19 and TLR20 were both found in ictalurids, cyprinids, and salmonids, demonstrating a wider range than previously known. The LRR structure within ECDs appeared generally well conserved. TLR7 demonstrated a very high identity to human TLR7 strongly suggesting that ligand specificity maybe conserved. Finally, expression profiling confirmed that most TLRs are widely expressed in a diversity of tissues and revealed marked differences of expression level.
    Immunogenetics 04/2013; · 2.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zebrafish model systems for infectious disease are increasingly used for the functional analysis of molecular pattern recognition processes. These studies benefit from the high conservation level of all innate immune factors in vertebrates. Zebrafish studies are strategically well positioned for this because of the ease of comparisons with studies in other fish species of which the immune system also have been intensively studied, but that are currently still less amendable to detailed genetic or microscopic studies. In this paper we focus on Toll-like receptor (TLR) signalling factors, which currently are the best characterized in mammalian systems. We review the knowledge on TLR signalling in the context of recent advances in zebrafish studies and discuss possibilities for future approaches that can complement studies in cell cultures and rodent models. A focus in these comparisons is the role of negative control mechanisms in immune responses that appear very important in an whole organism to keep adverse systemic responses in check. We also pay much attention to comparisons with studies in common carp that is highly related to zebrafish and that because of its large body mass can complement immune studies in zebrafish.
    Developmental and comparative immunology 02/2014; · 3.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: : Understanding a complex pathology such as inflammatory bowel disease, where host genetics (innate and adaptive immunity, barrier function) and environmental factors (microbes, diet, and stress) interact together to influence disease onset and severity, requires multipronged approaches to model these numerous variables. Researchers have typically relied on preclinical models of mouse and rat origin to push the boundary of knowledge further. However, incorporation of novel vertebrate models may contribute to new knowledge on specific aspects of intestinal homeostasis. An emerging literature has seen the use of zebrafish as a novel animal system to study key aspects of host-microbe interactions in the intestine. In this review, we briefly introduce components of host-microbiota interplay in the developing zebrafish intestine and summarize key lessons learned from this animal system; review important chemically induced and genetically engineered zebrafish models of intestinal immune disorders; and discuss perspectives and limitations of the zebrafish model system.
    Inflammatory Bowel Diseases 02/2014; · 5.12 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014