Article

Alternative route for glyoxylate consumption during growth on two-carbon compounds by Methylobacterium extorquens AM1.

Department of Chemical Engineering, University of Washington, Seattle, WA 98195-2180, USA.
Journal of bacteriology (Impact Factor: 2.69). 04/2010; 192(7):1813-23. DOI: 10.1128/JB.01166-09
Source: PubMed

ABSTRACT Methylobacterium extorquens AM1 is a facultative methylotroph capable of growth on both single-carbon and multicarbon compounds. Mutants defective in a pathway involved in converting acetyl-coenzyme A (CoA) to glyoxylate (the ethylmalonyl-CoA pathway) are unable to grow on both C(1) and C(2) compounds, showing that both modes of growth have this pathway in common. However, growth on C(2) compounds via the ethylmalonyl-CoA pathway should require glyoxylate consumption via malate synthase, but a mutant lacking malyl-CoA/beta-methylmalyl-CoA lyase activity (MclA1) that is assumed to be responsible for malate synthase activity still grows on C(2) compounds. Since glyoxylate is toxic to this bacterium, it seemed likely that a system is in place to keep it from accumulating. In this study, we have addressed this question and have shown by microarray analysis, mutant analysis, metabolite measurements, and (13)C-labeling experiments that M. extorquens AM1 contains an additional malyl-CoA/beta-methylmalyl-CoA lyase (MclA2) that appears to take part in glyoxylate metabolism during growth on C(2) compounds. In addition, an alternative pathway appears to be responsible for consuming part of the glyoxylate, converting it to glycine, methylene-H(4)F, and serine. Mutants lacking either pathway have a partial defect for growth on ethylamine, while mutants lacking both pathways are unable to grow appreciably on ethylamine. Our results suggest that the malate synthase reaction is a bottleneck for growth on C(2) compounds by this bacterium, which is partially alleviated by this alternative route for glyoxylate consumption. This strategy of multiple enzymes/pathways for the consumption of a toxic intermediate reflects the metabolic versatility of this facultative methylotroph and is a model for other metabolic networks involving high flux through toxic intermediates.

0 Followers
 · 
248 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Methylotrophy is a metabolic capability possessed by microorganisms that allows them to build biomass and to obtain energy from organic substrates containing no carbon-carbon bonds (C1 compounds, such as methane, methanol, etc.). This phenomenon in microbial physiology has been a subject of study for over 100 years, elucidating a set of well-defined enzymatic systems and pathways enabling this capability. The knowledge gained from the early genetic and genomic approaches to understanding methylotrophy pointed towards the existence of alternative enzymes/pathways for the specific metabolic goals. Different combinations of these systems in different organisms suggested that methylotrophy must be modular in its nature. More recent insights from genomic analyses, including the genomes representing novel types of methylotrophs, seem to reinforce this notion. This review integrates the new findings with the previously developed concept of modularity of methylotrophy.
    Environmental Microbiology 03/2011; 13(10):2603-22. DOI:10.1111/j.1462-2920.2011.02464.x · 6.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sources close to the operations of the US Computer System Security and Privacy Advisory Board (CSSPAB), established by the Computer Security Act of 1987, argue that the board is increasingly losing its clout and is rapidly becoming a virtual rubber stamp entity. The current chairman of the board, Franklin Reeder, who served as the Director of Information Policy in the White House’s Office of Management and Budget during the Reagan and Bush administrations, took over the chairmanship of the board in June 2000.
    Network Security 02/2001; 2001(2):6-6. DOI:10.1016/S1353-4858(01)00214-8
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Streamlined quantitative metabolomics in central metabolism of bacteria would be greatly facilitated by a high-efficiency liquid chromatography (LC) method in conjunction with accurate quantitation. To achieve this goal, a methodology for LC-tandem quadrupole mass spectrometry (LC-MS/MS) involving a pentafluorophenylpropyl (PFPP) column and culture-derived global (13)C-labeled internal standards (I.Ss.) has been developed and compared to hydrophilic interaction liquid chromatography (HILIC)-MS/MS and published combined two-dimensional gas chromatography and LC methods. All 50 tested metabolite standards from 5 classes (amino acids, carboxylic acids, nucleotides, acyl-CoAs and sugar phosphates) displayed good chromatographic separation and sensitivity on the PFPP column. In addition, many important critical pairs such as isomers/isobars (e.g. isoleucine/leucine, methylsuccinic acid/ethylmalonic acid and malonyl-CoA/3-hydroxybutyryl-CoA) and metabolites of similar structure (e.g. malate/fumarate) were resolved better on the PFPP than on the HILIC column. Compared to only one (13)C-labeled I.S., the addition of global (13)C-labeled I.Ss. improved quantitative linearity and accuracy. PFPP-MS/MS with global (13)C-labeled I.Ss. allowed the absolute quantitation of 42 metabolite pool sizes in Methylobacterium extorquens AM1. A comparison of metabolite level changes published previously for ethylamine (C2) versus succinate (C4) cultures of M. extorquens AM1 indicated a good consistency with the data obtained by PFPP-MS/MS, suggesting this single approach has the capability of providing comprehensive metabolite profiling similar to the combination of methods. The more accurate quantification obtained by this method forms a fundamental basis for flux measurements and can be used for metabolism modeling in bacteria in future studies.
    Journal of Chromatography A 09/2010; 1217(47):7401-10. DOI:10.1016/j.chroma.2010.09.055 · 4.26 Impact Factor

Preview

Download
1 Download
Available from