Article

Study of a wireless power transmission system for an active capsule endoscope.

Institute of Precise Engineering and Intelligent Microsystems, Shanghai Jiaotong University, Shanghai, People's Republic of China.
International Journal of Medical Robotics and Computer Assisted Surgery (Impact Factor: 1.49). 03/2010; 6(1):113-22. DOI: 10.1002/rcs.298
Source: PubMed

ABSTRACT An active capsule endoscope (ACE) will consume much more energy than can be power by batteries. Its orientation and position are always undetermined when it continues the natural way down the gastrointestinal track.
In order to deliver stable and sufficient energy to ACE safely, a wireless power transmission system based on inductive coupling is presented. The system consists of a Helmholtz primary coil outside and a multiple secondary coils inside the body. The Helmholtz primary coil is driven to generate a uniform alternating magnetic field covering the whole of the alimentary tract, and the multiple secondary coils receive energy regardless of the ACE's position and orientation relative to the generated magnetic field. The human tissue safety of the electromagnetic field generated by transmitting coil was evaluated, based on a high-resolution realistic human model.
At least 310 mW usable power can be transmitted under the worst geometrical conditions. Outer dimensions of the power receiver, 10 mm diameter x 12 mm; transmitting power, 25 W; resonant frequency, 400 kHz. The maximum specific absorption rate (SAR) and current density of human tissues are 0.329 W/kg and 3.82 A/m(2), respectively, under the basic restrictions of the International Commission on Non-ionizing Radiation Protection (ICNIRP).
The designed wireless power transmission is shown to be feasible and potentially safe in a future application.

0 Bookmarks
 · 
111 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multipurpose active capsule endoscopes (ACE) have drawn considerable attention in recent years, but these devices continue to suffer from energy limitations. In order to deliver stable and sufficient energy safely, a wireless power transmission system based on inductive coupling is presented. The system consists of a double-layer solenoid pair primary coil outside and a multiple secondary coils inside the body. At least 500 mW usable power can be transmitted under the worst geometrical conditions and the safety restraints in a volume of Φ13 × 13 mm. The wireless power transmission system is integrated to an ACE and applied in animal experiments. The designed wireless power transmission is proved to be feasible and potentially safe in a future application.
    Journal of Medical Engineering & Technology 04/2012; 36(5):235-41.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Powering and manipulating translational and rotational motions of objects wirelessly, and controlling several objects independently is of significant importance in numerous fields such as robotics, medicine, biology, fluid dynamics, optics. We propose a method based on coupled LC resonators, to control objects selectively by steering the frequency of an external magnetic field. This concept does not need any magnetic materials and it brings a rich variety of features concerning forces and torques. We theoretically and experimentally show that the forces can be enhanced by the interaction of resonators and that both direction and magnitude of forces can be controlled by the frequency of the applied external magnetic field. Moreover, we demonstrate interesting rotational effects, such as bi-directionally controllable torques, controllable stable orientations, and spinning, which leads to a wirelessly powered motor.
    Scientific reports. 01/2014; 4:5681.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wireless capsule endoscopy (WCE) is a promising technology for direct diagnosis of the entire small bowel to detect lethal diseases, including cancer and obscure gastrointestinal bleeding (OGIB). To improve the quality of diagnosis, some vital specifications of WCE such as image resolution, frame rate and working time need to be improved. Additionally, future multi-functioning robotic capsule endoscopy (RCE) units may utilize advanced features such as active system control over capsule motion, drug delivery systems, semi-surgical tools and biopsy. However, the inclusion of the above advanced features demands additional power that make conventional power source methods impractical. In this regards, wireless power transmission (WPT) system has received attention among researchers to overcome this problem. Systematic reviews on techniques of using WPT for WCE are limited, especially when involving the recent technological advancements. This paper aims to fill that gap by providing a systematic review with emphasis on the aspects related to the amount of transmitted power, the power transmission efficiency, the system stability and patient safety. It is noted that, thus far the development of WPT system for this WCE application is still in initial stage and there is room for improvements, especially involving system efficiency, stability, and the patient safety aspects.
    Sensors (Basel, Switzerland). 01/2014; 14(6):10929-10951.

Full-text

View
0 Downloads