CpG island methylator phenotype associated with tumor recurrence in tumor-node-metastasis stage I hepatocellular carcinoma.

Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
Annals of Surgical Oncology (Impact Factor: 4.12). 07/2010; 17(7):1917-26. DOI: 10.1245/s10434-010-0921-7
Source: PubMed

ABSTRACT CpG island methylator phenotype (CIMP), characterized by simultaneous methylation of multiple tumor suppressor genes (TSGs), has been reported to be associated with biological malignancy in many cancers. Whether CIMP is potentially predictive of clinical outcome in hepatocellular carcinoma (HCC) remains unknown.
We investigated the methylation status of ten TSGs and CIMP in 115 samples of HCC and 48 samples of corresponding nonneoplastic liver tissues using a methylation-specific polymerase chain reaction.
The methylation frequencies of the ten genes examined in HCC were 40.0% for p14 ( ARF ), 60.9% for p15 ( INK4b ), 70.4% for p16 ( INK4a ), 34.8% for p73, 70.4% for GSTP1, 64.3% for MGMT, 13.0% for hMLH1, 59.1% for RARbeta, 82.6% for SOCS-1, and 80.9% for OPCML. CIMP+ (with six or more methylated genes) was detected in 68 (59.1%) of 115 HCCs and none of 48 nonneoplastic liver tissues. On stratified univariate analysis, patients with tumor-node-metastasis (TNM) stage I HCC with CIMP+ had significantly shorter overall survival (OS) (P = 0.002) and recurrence-free survival (RFS) (P = 0.042) than those with CIMP-. Furthermore, multivariate analysis revealed CIMP+ as an independent prognostic factor for both OS [hazard ratio (HR), 12.266; P = 0.015] and RFS (HR, 2.275; P = 0.032) in TNM stage I patients.
CIMP+ may specifically define a subgroup of patients with unfavorable outcome in TNM stage I HCC. Examination of CIMP status may be useful for stratifying prognosis of patients with early-stage HCC and identifying patients who are at higher risk for recurrence.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocellular Carcinoma (HCC) is one of the most common cancers in the world and it is often associated with poor prognosis. Liver transplantation and resection are two currently available curative therapies. However, most patients cannot be treated with such therapies due to late diagnosis. This underscores the urgent need to identify potential markers that ensure early diagnosis of HCC. As more evidences are suggesting that epigenetic changes contribute hepatocarcinogenesis, DNA methylation was poised as one promising biomarker. Indeed, genome wide profiling reveals that aberrant methylation is frequent event in HCC. Many studies showed that differentially methylated genes and CpG island methylator phenotype (CIMP) status in HCC were associated with clinicopathological data. Some commonly studied hypermethylated genes include P16, SOCS1, GSTP1 and CDH1. In addition, studies have also revealed that methylation markers could be detected in patient blood samples and associated with poor prognosis of the disease. Undeniably, increasing number of methylation markers are being discovered through high throughput genome wide data in recent years. Proper and systematic validation of these candidate markers in prospective cohort is required so that their actual prognostication and surveillance value could be accurately determined. It is hope that in near future, methylation marker could be translate into clinical use, where patients at risk could be diagnosed early and that the progression of disease could be more correctly assessed.
    Biomarker research. 03/2014; 2(1):5.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic alterations have been identified as a major characteristic in human cancers. Advances in the field of epigenetics have contributed significantly in refining our knowledge of molecular mechanisms underlying malignant transformation. DNA methylation and microRNA expression are epigenetic mechanisms that are widely altered in human cancers including hepatocellular carcinoma (HCC), the third leading cause of cancer related mortality worldwide. Both DNA methylation and microRNA expression patterns are regulated in developmental stage specific-, cell type specific- and tissue-specific manner. The aberrations are inferred in the maintenance of cancer stem cells and in clonal cell evolution during carcinogenesis. The availability of genome-wide technologies for DNA methylation and microRNA profiling has revolutionized the field of epigenetics and led to the discovery of a number of epigenetically silenced microRNAs in cancerous cells and primary tissues. Dysregulation of these microRNAs affects several key signalling pathways in hepatocarcinogenesis suggesting that modulation of DNA methylation and/or microRNA expression can serve as new therapeutic targets for HCC. Accumulative evidence shows that aberrant DNA methylation of certain microRNA genes is an event specifically found in HCC which correlates with unfavorable outcomes. Therefore, it can potentially serve as a biomarker for detection as well as for prognosis, monitoring and predicting therapeutic responses in HCC.
    World journal of gastroenterology : WJG. 06/2014; 20(24):7894-7913.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study examined the correlation of α-dystroglycan (α-DG) expression and like-acetylglucosaminyl transferase (LARGE) with metastasis of human tongue cancer. Fifty human tongue cancer tissues and 2 tongue squamous cell carcinoma cell lines (CAL27 and SCC4) were involved. Immunohistochemistry was used to detect the expression of α-DG and LARGE. Methylation-specific polymerase chain reaction was performed to assess the methylation status of the LARGE gene promoter. CAL27 and SCC4 cells were transfected with exogenous LARGE and treated with 5-aza-2'-deoxycytidine (Aza-dC), respectively. Glycol sites of α-DG were detected by western blotting. In addition, the laminin overlay assay, cell adhesion assay, and invasion assay were performed. Immunohistochemical results showed that decreased expression of VIA4-1 and IIH6 (antibodies that recognize the glycol sites of α-DG) were correlated with the lymph node metastasis of tongue cancer (n = 50; P = .016 and .025, respectively). Decreased LARGE expression and hypermethylation of the LARGE gene promoter were correlated with lymph node metastasis and α-DG glycosylation in human tongue cancer (n = 50; P = .043 and .015 respectively). In addition, LARGE overexpression and Aza-dC treatment actively led to restoration of functional α-DG expression, elevation of laminin binding, and decrease of migratory ability in cancer cells. The results suggested that absent α-DG expression and LARGE deregulation were closely associated with nodal metastasis of tongue cancer. Aberrant α-DG expression and glycosylation were attributed at least in part to the abnormal epigenetic modification of LARGE, especially the hypermethylation of its promoter.
    Journal of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial Surgeons 01/2014; · 1.58 Impact Factor