Article

Neurokinin-1 receptors (NK1R:s), alcohol consumption, and alcohol reward in mice.

The Laboratory of Clinical and Translational Studies, National Institute On Alcohol Abuse and Alcoholism, 10 Center Drive, 10-CRC/1-5330, Bethesda, MD 20892-1108, USA.
Psychopharmacology (Impact Factor: 3.99). 03/2010; 209(1):103-11. DOI: 10.1007/s00213-010-1775-1
Source: PubMed

ABSTRACT Reduced voluntary alcohol consumption was recently found in neurokinin-1 receptor (NK1R)-deficient (KO) mice. It remains unknown whether this reflects developmental effects or direct regulation of alcohol consumption by NK1R:s, and whether the reduced consumption reflects motivational effects.
The objective of this study is to obtain an expanded preclinical validation of NK1R antagonism as a candidate therapeutic mechanism in alcohol use disorders.
The NK1R antagonist L-703,606 and NK1R KO mice were used in models that assess alcohol-related behaviors.
L-703,606 (3-10 mg/kg i.p.) dose-dependently suppressed alcohol intake in WT C57BL/6 mice under two-bottle free choice conditions but was ineffective in NK1R KO:s, demonstrating the receptor specificity of the effect. Alcohol reward, measured as conditioned place preference for alcohol, was reduced by NK1R receptor deletion in a gene dose-dependent manner. In a model where escalation of intake is induced by repeated cycles of deprivation and access, escalation was seen in WT mice, but not in KO mice. Among behavioral phenotypes previously reported for NK1R mice on a mixed background, an analgesic-like phenotype was maintained on the C57BL/6 background used here, while KO:s and WT:s did not differ in anxiety- and depression-related behaviors.
Acute blockade of NK1R:s mimics the effects of NKR1 gene deletion on alcohol consumption, supporting a direct rather than developmental role of the receptor in regulation of alcohol intake. Inactivation of NK1R:s critically modulates alcohol reward and escalation, two key characteristics of addiction. These data provide critical support for NK1R antagonism as a candidate mechanism for treatment of alcoholism.

0 Followers
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peptides synthesized in endocrine cells in the gastrointestinal tract and neurons are traditionally considered regulators of metabolism, energy intake, and appetite. However, recent work has demonstrated that many of these peptides act on corticostriatal-limbic circuitry and, in turn, regulate addictive behaviors. Given that alcohol is a source of energy and an addictive substance, it is not surprising that increasing evidence supports a role for gut-brain peptides specifically in alcohol use disorders (AUD). In this review, we discuss the effects of several gut-brain peptides on alcohol-related behaviors and the potential mechanisms by which these gut-brain peptides may interfere with alcohol-induced changes in corticostriatal-limbic circuitry. This review provides a summary of current knowledge on gut-brain peptides focusing on five peptides: neurotensin, glucagon-like peptide 1, ghrelin, substance P, and neuropeptide Y. Our review will be helpful to develop novel therapeutic targets for AUD.
    Frontiers in Neuroscience 09/2014; 8:288. DOI:10.3389/fnins.2014.00288
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alcohol dependence encompasses a serious medical and societal problem that constitutes a major public health concern. A serious consequence of dependence is the emergence of symptoms associated with the alcohol withdrawal syndrome when drinking is abruptly terminated or substantially reduced. Clinical features of alcohol withdrawal include signs of central nervous system hyperexcitability, heightened autonomic nervous system activation, and a constellation of symptoms contributing to psychologic discomfort and negative affect. The development of alcohol dependence is a complex and dynamic process that ultimately reflects a maladaptive neurophysiologic state. Perturbations in a wide range of neurochemical systems, including glutamate, γ-aminobutyric acid, monoamines, a host of neuropeptide systems, and various ion channels produced by the chronic presence of alcohol ultimately compromise the functional integrity of the brain. These neuroadaptations not only underlie the emergence and expression of many alcohol withdrawal symptoms, but also contribute to enhanced relapse vulnerability as well as perpetuation of uncontrolled excessive drinking. This chapter highlights the hallmark features of the alcohol withdrawal syndrome, and describes neuroadaptations in a wide array of neurotransmitter and neuromodulator systems (amino acid and monoamine neurotransmitter, neuropeptide systems, and various ion channels) as they relate to the expression of various signs and symptoms of alcohol withdrawal, as well as their relationship to the significant clinical problem of relapse and uncontrolled dangerous drinking.
    Handbook of Clinical Neurology 01/2014; 125C:133-156. DOI:10.1016/B978-0-444-62619-6.00009-4
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immune or brain proinflammatory signaling has been linked to some of the behavioral effects of alcohol. Immune signaling appears to regulate voluntary ethanol intake in rodent models, and ethanol intake activates the immune system in multiple models. This bidirectional link raises the possibility that consumption increases immune signaling, which in turn further increases consumption in a feed-forward cycle. Data from animal and human studies provide overlapping support for the involvement of immune-related genes and proteins in alcohol action, and combining animal and human data is a promising approach to systematically evaluate and nominate relevant pathways. Based on rodent models, neuroimmune pathways may represent unexplored, nontraditional targets for medication development to reduce alcohol consumption and prevent relapse. Peroxisome proliferator-activated receptor agonists are one class of anti-inflammatory medications that demonstrate antiaddictive properties for alcohol and other drugs of abuse. Expression of immune-related genes is altered in animals and humans following chronic alcohol exposure, and the regulatory influences of specific mRNAs, microRNAs, and activated cell types are areas of intense study. Ultimately, the use of multiple datasets combined with behavioral validation will be needed to link specific neuroimmune pathways to addiction vulnerability.
    International Review of Neurobiology 01/2014; 118C:13-39. DOI:10.1016/B978-0-12-801284-0.00002-6 · 2.46 Impact Factor