Article

Plumbagin, isolated from Plumbago zeylanica, induces cell death through apoptosis in human pancreatic cancer cells.

Department of Radiation Oncology, Far Eastern Memorial Hospital, Graduate Institute of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.
Pancreatology (Impact Factor: 2.04). 01/2009; 9(6):797-809. DOI: 10.1159/000210028
Source: PubMed

ABSTRACT Pancreatic cancer is one of the most resistant malignancies. Several studies have indicated that plumbagin isolated from Plumbago zeylanica possesses anticancer activity. However, its antitumor effects against pancreatic cancer have not been explored.
We investigated the effect of plumbagin on the growth of human pancreatic carcinoma cells and its possible underlying mechanisms.
Plumbagin inhibited the growth of Panc-1 and Bxpc-3 cells in a dose-dependent and time-dependent manner. Liu's staining and transmission electron microscopy demonstrated morphological changes resembling apoptosis in Panc-1 cells treated with plumbagin. The degree of apoptosis was assessed by measuring the proportions of sub-G(1), annexin V+/propidium iodide-, and terminal- deoxynucleotidyl-transferase-mediated-nick-end labeling (TUNEL)+ cells, and a significant increment in apoptotic cells was observed. Exposure to plumbagin caused the upregulation of Bax, a rapid decline in mitochondrial transmembrane potential, apoptosis-inducing factor overexpression in cytosol, and the cleavage of procaspase-9 and poly ADP-ribose polymerase. Activation of caspase-3, but not caspase-8, was evidenced by fluorometric substrate assay. Pretreatment with caspase inhibitors did not block plumbagin-induced apoptosis. Alternatively, it is possible that plumbagin downregulated phosphoinositide 3-kinase activity through a negative feedback mechanism. In an orthotopic pancreatic tumor model, plumbagin markedly inhibited the growth of Panc-1 xenografts without any significant effect on leukocyte counts or body weight.
Plumbagin may induce apoptosis in human pancreatic cancer cells primarily through the mitochondria-related pathway followed by both caspase-dependent and caspase-independent cascades. It indicates that plumbagin can be potentially developed as a novel therapeutic agent against pancreatic cancer.

1 Bookmark
 · 
164 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic cancer has a poor prognosis with a 5-year survival rate of <5%. It does not respond well to either chemotherapy or radiotherapy, due partly to cancer cell apoptotic resistance (AR). AR has been attributed to certain genetic abnormalities or defects in apoptotic signaling pathways. In pancreatic cancer, significant mutations of K-ras and p53, constitutive activation of NFκB, over-expression of heat shock proteins (Hsp90, Hsp70), histone deacetylase (HDACs) and the activities of other proteins (COX-2, Nrf2 and bcl-2 family members) are closely linked with resistance to apoptosis and invasion. AR has also been associated with aberrant signaling of MAPK, PI3K-AKT, JAK/STAT, SHH, Notch, and Wnt/β-catenin pathways. Strategies targeting these signaling molecules and pathways provide an alternative for overcoming pancreatic cancer AR. The use of herbal medicines or natural products (HM/NPs) alone or in combination with conventional anti-cancer agents has been shown to produce beneficial effects through actions upon multiple molecular pathways involved in AR. The current standard first-line chemotherapeutic agents for pancreatic cancer are gemcitabine (Gem) or Gem-containing combinations; however, the efficacy is dissatisfied and this limitation is largely attributed to resistance to apoptosis. Meanwhile, emerging data have pointed to a combination of HM/NPs that may augment the sensitivity of pancreatic cancer cells to Gem. Greater understanding of how these compounds affect the molecular mechanisms of apoptosis may propel development of HM/NPs as anti-cancer agents and/or adjuvant therapies forward. In this review, we give a critical appraisal of the use of HM/NPs alone and in combination with anti-cancer drugs. We also discuss the potential regulatory mechanisms whereby AR is involved in these protective pathways.
    The international journal of biochemistry & cell biology. 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is very limited information regarding plants used by traditional healers in Bandarban Hill Tracts (BHT), Bangladesh for treating general as well as complex ailments. Current study provides significant ethnopharmacological information, both qualitative and quantitative on medical plants in BHT.
    Journal of Ethnopharmacology 05/2014; · 2.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synthesis of compound libraries and their concurrent assessment as selective reagents for probing and modulating biological function continues to be an active area of chemical biology. Microwave-assisted solid-phase Dötz benzannulation reactions have been used to inexpensively synthesize 2, 3-disubstituted-1, 4-naphthoquinone derivatives. Herein, we report the biological testing of a small library of such compounds using a murine fibroblast cell line (L929). Assessment of cellular viability identified three categories of cytotoxic compounds: no toxicity, low/intermediate toxicity and high toxicity. Increased levels of Annexin-V-positive staining and of caspase 3 activity confirmed that low, intermediate, and highly toxic compounds promote cell death. The compounds varied in their ability to induce mitochondrial depolarization and formation of reactive oxygen species (ROS). Both cytotoxic and non-cytotoxic compounds triggered mitochondrial depolarization, while one highly cytotoxic compound did not. In addition, all cytotoxic compounds promoted increased intracellular ROS but the cells were only partially protected from compound-induced apoptosis when in the presence of superoxide dismutase, catalase, or ascorbic acid suggesting utilization of additional pro-death mechanisms. In summary, nine of twelve (75%) 1, 4-naphthoquinone synthetic compounds were cytotoxic. Although the mitochondria did not appear to be a central target for induction of cell death, all of the cytotoxic compounds induced ROS formation. Thus, the data demonstrate that the synthesis regime effectively created cytotoxic compounds highlighting the potential use of the regime and its products for the identification of biologically relevant reagents.
    PLoS ONE 01/2014; 9(9):e106828. · 3.53 Impact Factor