Article

Interneuronal Transfer of Human Tau Between Lamprey Central Neurons in situ

Department of Biological Sciences, Center for Cellular Neuroscience and Neurodegeneration Research, University of Massachusetts Lowell, Lowell, MA, USA.
Journal of Alzheimer's disease: JAD (Impact Factor: 3.61). 01/2010; 19(2):647-64. DOI: 10.3233/JAD-2010-1273
Source: PubMed

ABSTRACT The mechanisms by which tau-containing lesions are propagated between adjacent and synaptically interconnected parts of the brain are a potentially important but poorly understood component of human tauopathies such as Alzheimer's disease, Pick's disease, and corticobasal degeneration. Since the utility of currently available transgenic models for studying intercellular aspects of tauopathy is limited by their broad patterns of tau expression in the central nervous system, we used an in situ tauopathy model that replicates tau-induced cytodegeneration in identified neurons on a tau-negative background to determine whether tau secretion or interneuronal transfer might play a role in lesion propagation. We found that the N-terminal half of tau is required for tau secretion and is efficiently exported to the extracellular space and adjacent neurons at relatively low levels of overexpression. By contrast, full-length tau is secreted by a separate mechanism that is correlated with phosphorylation of tau at tyrosine 18 and dendritic degeneration, is exacerbated by tauopathy mutations, and blocked by mutations that inhibit tau:tau interactions. Anterograde transneuronal tau movement occurred with the expression of tau containing the P301L tauopathy mutant, but not with wild type tau isoforms. Our results are consistent with recent studies suggesting a role for molecular "templating" in the propagation of neurofibrillary lesions and provide a novel conceptual and experimental basis for studying the mechanisms of interneuronal propagation and toxicity in human neurodegenerative disease.

Download full-text

Full-text

Available from: Garth F. Hall, Jul 04, 2015
0 Followers
 · 
202 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prion diseases or Transmissible Spongiform Encephalopathies (TSEs) are a group of fatal neurodegenerative disorders affecting several mammalian species being Creutzfeldt-Jacob Disease (CJD) the most representative in human beings, scrapie in ovine, Bovine Spongiform Encephalopathy (BSE) in bovine and Chronic Wasting Disease (CWD) in cervids. As stated by the "protein-only hypothesis", the causal agent of TSEs is a self-propagating aberrant form of the prion protein (PrP) that through a misfolding event acquires a β-sheet rich conformation known as PrP(Sc) (from scrapie). This isoform is neurotoxic, aggregation prone and induces misfolding of native cellular PrP. Compelling evidence indicates that disease-specific protein misfolding in amyloid deposits could be shared by other disorders showing aberrant protein aggregates such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Amyotrophic lateral sclerosis (ALS) and systemic Amyloid A amyloidosis (AA amyloidosis). Evidences of shared mechanisms of the proteins related to each disease with prions will be reviewed through the available in vivo models. Taking prion research as reference, typical prion-like features such as seeding and propagation ability, neurotoxic species causing disease, infectivity, transmission barrier and strain evidences will be analyzed for other protein-related diseases. Thus, prion-like features of amyloid β peptide and tau present in AD, α-synuclein in PD, SOD-1, TDP-43 and others in ALS and serum α-amyloid (SAA) in systemic AA amyloidosis will be reviewed through models available for each disease. Copyright © 2015. Published by Elsevier B.V.
    Virus Research 04/2015; DOI:10.1016/j.virusres.2015.04.014 · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease is characterized pathologically by extracellular senile plaques, intracellular neurofibrillary tangles, and granulovacuolar degeneration. It has been debated whether these hallmark lesions are markers or mediators of disease progression, and numerous paradigms have been proposed to explain the appearance of each lesion individually. However, the unfaltering predictability of these lesions suggests a single pathological nidus central to disease onset and progression. One of the earliest pathologies observed in Alzheimer's disease is endocytic dysfunction. Here we review the recent literature of endocytic dysfunction with particular focus on disrupted lysosomal fusion and propose it as a unifying hypothesis for the three most-studied lesions of Alzheimer's disease.
    08/2012; 2012:752894. DOI:10.1155/2012/752894
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With populations ageing worldwide, the need for treating and preventing diseases associated with high age is pertinent. Alzheimer's disease (AD) is reaching epidemic proportions, yet the currently available therapies are limited to a symptomatic relief, without halting the degenerative process that characterizes the AD brain. As in AD cholinergic neurons are lost at high numbers, the initial strategies were limited to the development of acetylcholinesterase inhibitors, and more recently the NMDA receptor antagonist memantine, in counteracting excitotoxicity. With the identification of the protein tau in intracellular neurofibrillary tangles and of the peptide amyloid-β (Aβ) in extracellular amyloid plaques in the AD brain, and a better understanding of their role in disease, newer strategies are emerging, which aim at either preventing their formation and deposition or at accelerating their clearance. Interestingly, what is well established to combat viral diseases in peripheral organs - vaccination - seems to work for the brain as well. Accordingly, immunization strategies targeting Aβ show efficacy in mice and to some degree also in humans. Even more surprising is the finding in mice that immunization strategies targeting tau, a protein that forms aggregates in nerve cells, ameliorates the tau-associated pathology. We are reviewing the literature and discuss what can be expected regarding the translation into clinical practice and how the findings can be extended to other neurodegenerative diseases with protein aggregation in brain.
    British Journal of Pharmacology 11/2011; 165(5):1246-59. DOI:10.1111/j.1476-5381.2011.01713.x · 4.99 Impact Factor