One-step RNA pathogen detection with reverse transcriptase activity of a mutated thermostable Thermus aquaticus DNA polymerase.

Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
Biotechnology Journal (Impact Factor: 3.71). 02/2010; 5(2):224-31. DOI: 10.1002/biot.200900200
Source: PubMed

ABSTRACT We describe the cloning and characterization of a mutated thermostable DNA polymerase from Thermus aquaticus (Taq) that exhibits an increased reverse transcriptase activity and is therefore designated for one-step PCR pathogen detection using established real-time detection methods. We demonstrate that this Taq polymerase mutant (Taq M1) has similar PCR sensitivity and nuclease activity as the respective Taq wild-type DNA polymerase. In addition, and in marked contrast to the wild-type, Taq M1 exhibits a significantly increased reverse transcriptase activity especially at high temperatures (>60 degrees C). RNA generally hosts highly stable secondary structure motifs, such as hairpins and G-quadruplexes, which complicate, or in the worst case obviate, reverse transcription (RT). Thus, RT at high temperatures is desired to weaken or melt secondary structure motifs. To demonstrate the ability of Taq M1 for RNA detection of pathogens, we performed TaqMan probe-based diagnostics of Dobrava viruses by one-step RT-PCR. We found similar detection sensitivities compared to commercially available RT-PCR systems without further optimization of reaction parameters, thus making this enzyme highly suitable for any PCR probe-based RNA detection method.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The selectivity of DNA polymerases is crucial for many applications. For example, high discrimination between the extension of matched versus mismatched primer termini is desired for the detection of a single nucleotide variation at a particular locus within the genome. Here we describe the generation of thermostable mutants of the large fragment of Thermus aquaticus DNA polymerase (KlenTaq) with increased mismatch extension selectivity. In contrast to previously reported much less active KlenTaq mutants with mismatch discrimination abilities, many of the herein discovered mutants show conserved wild-type-like high activities. We demonstrate for one mutant containing the single amino acid exchange R660V the suitability for application in allele-specific amplifications directly from whole blood without prior sample purification. Also the suitability of the mutant for methylation specific amplification in the diagnostics of 5-methyl cytosines is demonstrated. Furthermore, the identified mutant supersedes other commercially available enzymes in human leukocyte antigen (HLA) analysis by sequence-specific primed polymerase chain reactions (PCRs).
    PLoS ONE 01/2014; 9(5):e96640. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Orthogonal nucleic acids are chemically modified nucleic acid polymers that are unable to transfer information with natural nucleic acids and thus can be used in synthetic biology to store and transfer genetic information independently. Recently, it was proposed that xylose-DNA (dXNA) can be considered to be a potential candidate for an orthogonal system. Herein, we present the structure in solution and conformational analysis of two self-complementary, fully modified dXNA oligonucleotides, as determined by CD and NMR spectroscopy. These studies are the initial experimental proof of the structural orthogonality of dXNAs. In aqueous solution, dXNA duplexes predominantly form a linear ladderlike (type-1) structure. This is the first example of a furanose nucleic acid that adopts a ladderlike structure. In the presence of salt, an equilibrium exists between two types of duplex form. The corresponding nucleoside triphosphates (dXNTPs) were synthesized and evaluated for their ability to be incorporated into a growing DNA chain by using several natural and mutant DNA polymerases. Despite the structural orthogonality of dXNA, DNA polymerase β mutant is able to incorporate the dXNTPs, showing DNA-dependent dXNA polymerase activity.
    Chemistry - A European Journal 12/2011; 18(3):869-79. · 5.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vitro synthesis of cDNA is one of the most important techniques in present molecular biology. Faithful synthesis of long cDNA on highly structured RNA templates requires thermostable and processive reverse transcriptases. In a recent attempt to increase the thermostability of the wt Moloney Murine leukemia virus reverse transcriptase (M-MuLV RT), we have employed the compartmentalized ribosome display (CRD) evolution in vitro technique and identified a large set of previously unknown mutations that enabled cDNA synthesis at elevated temperatures. In this study, we have characterized a group of the M-MuLV RT variants (28 novel amino acid positions, 84 point mutants) carrying the individual mutations. The performance of point mutants (thermal inactivation rate, substrate-binding affinity and processivity) correlated remarkably well with the mutation selection frequency in the CRD experiment. By combining the best-performing mutations D200N, L603W, T330P, L139P and E607K, we have generated highly processive and thermostable multiply-mutated M-MuLV RT variants. The processivity of the best-performing multiple mutant increased to 1500 nt (65-fold improvement in comparison to the wt enzyme), and the maximum temperature of the full-length 7.5-kb cDNA synthesis was raised to 62°C (17° higher in comparison with the wt enzyme).
    Protein Engineering Design and Selection 06/2012; 25(10):657-68. · 2.59 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014