Gli1 regulates the proliferation and differentiation of HSCs and myeloid progenitors

The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
Blood (Impact Factor: 10.45). 03/2010; 115(12):2391-6. DOI: 10.1182/blood-2009-09-241703
Source: PubMed


The Hedgehog (Hh) pathway is essential for normal embryonic development and tissue repair. The role of Hh signaling in hematopoiesis has been studied primarily by modulating the activity of Patched and Smoothened, but results have been conflicting. Some studies demonstrate a requirement for pathway activity in hematopoiesis, whereas others report that it is dispensable. Hh activity converges on the Gli transcription factors, but the specific role of these downstream effectors in hematopoiesis has not been reported. We have analyzed hematopoietic stem cell (HSC) and progenitor function in mice with a homozygous deletion of Gli1 (Gli1(null)). Gli1(null) mice have more long-term HSCs that are more quiescent and show increased engraftment after transplantation. In contrast, myeloid development is adversely affected with decreased in vitro colony formation, decreased in vivo response to granulocyte colony-stimulating factor (G-CSF), and impaired leukocyte recovery after chemotherapy. Levels of the proto-oncogene Cyclin D1 are reduced in Gli1(null) mice and may explain the loss of proliferation seen in HSCs and progenitor cells. These data demonstrate that Gli1 regulates normal and stress hematopoiesis. Moreover, they suggest that Gli1 and Smoothened may not be functionally redundant, and direct GLI1 inhibitors may be needed to effectively block HH/GLI1 activity in human disease.

20 Reads
  • Source
    • "Activated Hh signaling through loss of Ptch leads to increased HSC formation and activity [64,66], enhanced recoverability following treatment with 5-fluorouracil [65,66], and increased regeneration capacity [65,66]. Conversely, loss of pathway activity through mutation of the downstream effector, Gli1, in mice leads to decreased proliferation of long-term HSCs and myeloid progenitors, reduced myeloid differentiation, and delayed recovery following 5-fluorouracil treatment [69]. Interestingly, reduced HSC activity (through loss of Gli1) led to increased engraftment. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Treatment of myelofibrosis (MF), a BCR-ABL-negative myeloproliferative neoplasm, is challenging. The only current potentially curative option, allogeneic hematopoietic stem cell transplant, is recommended for few patients. The remaining patients are treated with palliative therapies to manage MF-related anemia and splenomegaly. Identification of a mutation in the Janus kinase 2 (JAK2) gene (JAK2 V617F) in more than half of all patients with MF has prompted the discovery and clinical development of inhibitors that target JAK2. Although treatment with JAK2 inhibitors has been shown to improve symptom response and quality of life in patients with MF, these drugs do not alter the underlying disease; therefore, novel therapies are needed. The hedgehog (Hh) signaling pathway has been shown to play a role in normal hematopoiesis and in the tumorigenesis of hematologic malignancies. Moreover, inhibitors of the Hh pathway have been shown to inhibit growth and self-renewal capacity in preclinical models of MF. In a mouse model of MF, combined inhibition of the Hh and JAK pathways reduced JAK2 mutant allele burden, reduced bone marrow fibrosis, and reduced white blood cell and platelet counts. Preliminary clinical data also suggest that inhibition of the Hh pathway, alone or in combination with JAK2 inhibition, may enable disease modification in patients with MF. Future studies, including one combining the Hh pathway inhibitor sonidegib and the JAK2 inhibitor ruxolitinib, are underway in patients with MF and will inform whether this combination approach can lead to true disease modification.
    Journal of Hematology & Oncology 03/2014; 7(1):18. DOI:10.1186/1756-8722-7-18 · 4.81 Impact Factor
  • Source
    • "For example, leukemia stem cell maintenance and expansion are dependent on Hh signaling.138,175 The effect of Hh signaling on a normal hematopoietic stem cell population, however, is still quite controversial, with some showing effects but others with no effects.138,177–180 Based on cancer stem cell theory, it is anticipated that Hh signaling activation exerts resistance to cancer chemotherapy and radiotherapy.181 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Since its first description in Drosophila by Drs Nusslein-Volhard and Wieschaus in 1980, hedgehog (Hh) signaling has been implicated in regulation of cell differentiation, proliferation, tissue polarity, stem cell maintenance, and carcinogenesis. The first link of Hh signaling to cancer was established through studies of Gorlin syndrome in 1996 by two independent teams. Later, it was shown that Hh signaling may be involved in many types of cancer, including skin, leukemia, lung, brain, and gastrointestinal cancers. In early 2012, the US Food and Drug Administration approved the clinical use of Hh inhibitor Erivedge/vismodegib for treatment of locally advanced and metastatic basal cell carcinomas. With further investigation, it is possible to see more clinical applications of Hh signaling inhibitors. In this review, we will summarize major advances in the last 3 years in our understanding of Hh signaling activation in human cancer, and recent developments in preclinical and clinical studies using Hh signaling inhibitors.
    OncoTargets and Therapy 10/2013; 6:1425-1435. DOI:10.2147/OTT.S34678 · 2.31 Impact Factor
  • Source
    • "Since Hh signaling has been linked to a variety of cancers, some of which develop in the setting of inflammation [29], [30], [31], we examined the role of Gli1, a known component of the Hh signaling pathway, in the transition from chronic inflammation to mucous neck cell metaplasia or SPEM. Gli1 is expressed in both intestinal myeloid and myofibroblasts [11], consistent with prior studies showing Gli1 in hematopoietic stem cells [32], [33]. We can only speculate as to why Gli1 is lost only in α-SMA+ cells of the muscularis mucosa in response to H. felis, but not in the intraglandular mesenchyme. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic inflammation in the stomach induces metaplasia, the pre-cancerous lesion that precedes inflammation-driven neoplastic transformation. While Hedgehog signaling contributes to the initiation of some cancers, its role in gastric transformation remains poorly defined. We found that Helicobacter-infected C57BL/6 mice develop extensive mucous cell metaplasia at 6 month but not at 2 months post-infection. Gastric metaplasia coincided with the appearance of CD45(+)MHCII(+)CD11b(+)CD11c(+) myeloid cells that were normally not present in the chronic gastritis at 2 months. The myeloid regulatory gene Schlafen-4 was identified in a microarray analysis comparing infected WT versus Gli1 null mice and was expressed in the CD11b(+)CD11c(+) myeloid population. Moreover this same population expressed IL-1β and TNFα pro-inflammatory cytokines. By 6 months, the mucous neck cell metaplasia (SPEM) expressed IL-6, phosphorylated STAT3 and the proliferative marker Ki67. Expression was not observed in Gli1 mutant mice consistent with the requirement of Gli1 to induce this pre-neoplastic phenotype. Ectopic Shh ligand expression alone was not sufficient to induce SPEM, but with Helicobacter infection synergistically increased the histologic severity observed with the inflammation. Therefore Hedgehog signaling is required, but is not sufficient to generate pre-neoplastic changes during chronic gastritis. Gli1-dependent myeloid cell differentiation plays a pivotal role in the appearance of myeloid cell subtypes ostensibly required for SPEM development. Moreover, it suggests that therapies capable of targeting this phenotypic switch might prevent progression to metaplasia, the pre-neoplastic change that develops prior to dysplasia and gastric cancer, which also occurs in other epithelial-derived neoplasias initiated by chronic inflammation.
    PLoS ONE 03/2013; 8(3):e58935. DOI:10.1371/journal.pone.0058935 · 3.23 Impact Factor
Show more


20 Reads
Available from