Article

Gli1 regulates the proliferation and differentiation of HSCs and myeloid progenitors.

The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
Blood (Impact Factor: 9.78). 03/2010; 115(12):2391-6. DOI: 10.1182/blood-2009-09-241703
Source: PubMed

ABSTRACT The Hedgehog (Hh) pathway is essential for normal embryonic development and tissue repair. The role of Hh signaling in hematopoiesis has been studied primarily by modulating the activity of Patched and Smoothened, but results have been conflicting. Some studies demonstrate a requirement for pathway activity in hematopoiesis, whereas others report that it is dispensable. Hh activity converges on the Gli transcription factors, but the specific role of these downstream effectors in hematopoiesis has not been reported. We have analyzed hematopoietic stem cell (HSC) and progenitor function in mice with a homozygous deletion of Gli1 (Gli1(null)). Gli1(null) mice have more long-term HSCs that are more quiescent and show increased engraftment after transplantation. In contrast, myeloid development is adversely affected with decreased in vitro colony formation, decreased in vivo response to granulocyte colony-stimulating factor (G-CSF), and impaired leukocyte recovery after chemotherapy. Levels of the proto-oncogene Cyclin D1 are reduced in Gli1(null) mice and may explain the loss of proliferation seen in HSCs and progenitor cells. These data demonstrate that Gli1 regulates normal and stress hematopoiesis. Moreover, they suggest that Gli1 and Smoothened may not be functionally redundant, and direct GLI1 inhibitors may be needed to effectively block HH/GLI1 activity in human disease.

0 Bookmarks
 · 
151 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The initiation and maintenance of a malignant phenotype requires complex and synergistic interactions of multiple oncogenic signals. The Hedgehog (HH)/GLI pathway has been implicated in a variety of cancer entities and targeted pathway inhibition is of therapeutic relevance. Signal cross-talk with other cancer pathways including PI3K/AKT modulates HH/GLI signal strength and its oncogenicity. In this study, we addressed the role of HH/GLI and its putative interaction with the PI3K/AKT cascade in the initiation and maintenance of chronic lymphocytic leukemia (CLL). Using transgenic mouse models, we show that B-cell-specific constitutive activation of HH/GLI signaling either at the level of the HH effector and drug target Smoothened or at the level of the GLI transcription factors does not suffice to initiate a CLL-like phenotype characterized by the accumulation of CD5(+) B cells in the lymphatic system and peripheral blood. Furthermore, Hh/Gli activation in Pten-deficient B cells with activated Pi3K/Akt signaling failed to enhance the expansion of leukemic CD5(+) B cells, suggesting that genetic or epigenetic alterations leading to aberrant HH/GLI signaling in B cells do not suffice to elicit a CLL-like phenotype in mice. By contrast, we identify a critical role of GLI and PI3K signaling for the survival of human primary CLL cells. We show that combined targeting of GLI and PI3K/AKT/mTOR signaling can have a synergistic therapeutic effect in cells from a subgroup of CLL patients, thereby providing a basis for the evaluation of future combination therapies targeting HH/GLI and PI3K signaling in this common hematopoietic malignancy.Oncogene advance online publication, 2 February 2015; doi:10.1038/onc.2014.450.
    Oncogene 02/2015; · 8.56 Impact Factor
  • Cell cycle (Georgetown, Tex.) 11/2014; 9(17):3449-3456. · 5.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hedgehog (Hh) is first described as a genetic mutation that has “spiked” phenotype in the cuticles of Drosophila in later 1970s. Since then, Hh signaling has been implicated in regulation of differentiation, proliferation, tissue polarity, stem cell population and carcinogenesis. The first link of Hh signaling to cancer was established through discovery of genetic mutations of Hh receptor gene PTCH1 being responsible for Gorlin syndrome in 1996. It was later shown that Hh signaling is associated with many types of cancer, including skin, leukemia, lung, brain and gastrointestinal cancers. Another important milestone for the Hh research field is the FDA approval for the clinical use of Hh inhibitor Erivedge/Vismodegib for treatment of locally advanced and metastatic basal cell carcinomas. However, recent clinical trials of Hh signaling inhibitors in pancreatic, colon and ovarian cancer all failed, indicating a real need for further understanding of Hh signaling in cancer. In this review, we will summarize recent progress in the Hh signaling mechanism and its role in human cancer.
    Archive für Toxikologie 01/2015; · 5.08 Impact Factor