In vitro and in vivo enhanced generation of human A9 dopamine neurons from neural stem cells by Bcl-XL.

Center of Molecular Biology Severo Ochoa (Consejo Superior de Investigaciones Científicas-UAM), Department of Molecular Biology, Autonomous University of Madrid, 28049 Madrid, Spain.
Journal of Biological Chemistry (Impact Factor: 4.6). 03/2010; 285(13):9881-97. DOI: 10.1074/jbc.M109.054312
Source: PubMed

ABSTRACT Human neural stem cells derived from the ventral mesencephalon (VM) are powerful research tools and candidates for cell therapies in Parkinson disease. Previous studies with VM dopaminergic neuron (DAn) precursors indicated poor growth potential and unstable phenotypical properties. Using the model cell line hVM1 (human ventral mesencephalic neural stem cell line 1; a new human fetal VM stem cell line), we have found that Bcl-X(L) enhances the generation of DAn from VM human neural stem cells. Mechanistically, Bcl-X(L) not only exerts the expected antiapoptotic effect but also induces proneural (NGN2 and NEUROD1) and dopamine-related transcription factors, resulting in a high yield of DAn with the correct phenotype of substantia nigra pars compacta (SNpc). The expression of key genes directly involved in VM/SNpc dopaminergic patterning, differentiation, and maturation (EN1, LMX1B, PITX3, NURR1, VMAT2, GIRK2, and dopamine transporter) is thus enhanced by Bcl-X(L). These effects on neurogenesis occur in parallel to a decrease in glia generation. These in vitro Bcl-X(L) effects are paralleled in vivo, after transplantation in hemiparkinsonian rats, where hVM1-Bcl-X(L) cells survive, integrate, and differentiate into DAn, alleviating behavioral motor asymmetry. Bcl-X(L) then allows for human fetal VM stem cells to stably generate mature SNpc DAn both in vitro and in vivo and is thus proposed as a helpful factor for the development of cell therapies for neurodegenerative conditions, Parkinson disease in particular.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Along with other regulators of cell metabolism, hypoxia-inducible factors HIF-1 and HIF-2 differ-entially regulate cell adaptation to hypoxia. Switches in HIF-1/HIF-2 signaling in chronic hypoxia have not been fully investigated. Methods: Proliferation, viability, apoptosis, neuronal and bioenergetic markers, mitochondrial function, respi-ration, glycolysis, HIF signalling, responses to O 2 and glucose deprivation (OGD) were examined using tumor PC12 and SH-SY5Y cells continuously grown at 3% O 2 . Results: Hypoxic PC12 cells (H-cells) exhibit reduced proliferation and histone H4 acetylation, NGF-independent differentiation, activation of AMPK, inhibition of Akt, altered mitochondria and response to NGF. Cellular cytochrome c is increased with no effect on apoptosis. Reduction in respiration has minor effect on cellular ATP which is maintained through activated uptake (GLUT1) and utilization (HK2, PFK2) of glu-cose. H-cells exhibit resistance to OGD linked to increased glycogen stores. HIF-2alpha protein is decreased without changes in mRNA. Unlike HIF-1alpha, HIF-2alpha is not stabilized pharmacologically or by O 2 depri-vation. Capacity for HIF-2alpha stabilization is partly restored when H-cells are cultured at normoxia. In low-respiring SH-SY5Y cells cultured under the same conditions HIF-2alpha stabilization and energy budget are not affected. Conclusions: In chronically hypoxic PC12 cells glycolytic energy budget, increased energy preservation and low susceptibility to OGD are observed. HIF-2alpha no longer orchestrates adaptive responses to anoxia. General significance: Demonstrated switch in HIF-1/HIF-2 signaling upon chronic hypoxia can facilitate cell survival in energy crisis, by regulating balance between energy saving and decrease in proliferation, on one hand and active cell growth and tumor expansion, on the other.
    Biochimica et Biophysica Acta (BBA) - General Subjects 02/2013; 1830(6):3553. · 3.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neural stem cells (NSCs) constitute a promising source of cells for transplantation in Parkinson's disease (PD), but protocols for controlled dopaminergic differentiation are not yet available. Here we investigated the influence of oxygen on dopaminergic differentiation of human fetal NSCs derived from the midbrain and forebrain. Cells were differentiated for 10 days in vitro at low, physiological (3%) versus high, atmospheric (20%) oxygen tension. Low oxygen resulted in upregulation of vascular endothelial growth factor and increased the proportion of tyrosine hydroxylase-immunoreactive (TH-ir) cells in both types of cultures (midbrain: 9.1±0.5 and 17.1±0.4 (P<0.001); forebrain: 1.9±0.4 and 3.9±0.6 (P<0.01) percent of total cells). Regardless of oxygen levels, the content of TH-ir cells with mature neuronal morphologies was higher for midbrain as compared to forebrain cultures. Proliferative Ki67-ir cells were found in both types of cultures, but the relative proportion of these cells was significantly higher for forebrain NSCs cultured at low, as compared to high, oxygen tension. No such difference was detected for midbrain-derived cells. Western blot analysis revealed that low oxygen enhanced β-tubulin III and GFAP expression in both cultures. Up-regulation of β-tubulin III was most pronounced for midbrain cells, whereas GFAP expression was higher in forebrain as compared to midbrain cells. NSCs from both brain regions displayed less cell death when cultured at low oxygen tension. Following mictrotransplantation into mouse striatal slice cultures predifferentiated midbrain NSCs were found to proliferate and differentiate into substantial numbers of TH-ir neurons with mature neuronal morphologies, particularly at low oxygen. In contrast, predifferentiated forebrain NSCs microtransplanted using identical conditions displayed little proliferation and contained few TH-ir cells, all of which had an immature appearance. Our data may reflect differences in dopaminergic differentiation capacity and region-specific requirements of NSCs, with the dopamine-depleted striatum cultured at low oxygen offering an attractive micro-environment for midbrain NSCs.
    PLoS ONE 05/2014; 9(5):e96465. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wnts are a highly conserved family of lipid-modified glycoproteins that work as morphogens to activate several signaling pathways, leading to remodeling of the cytoskeleton and the regulation of gene transcription. Wnt signaling regulates multiple cellular functions and cell systems, including the development and maintenance of midbrain dopaminergic (mDA) neurons. These neurons are of considerable interest for regenerative medicine because their degeneration results in Parkinson's disease (PD). This review focuses on new advances in understanding key functions of Wnts in mDA neuron development and using novel tools to regulate Wnt signaling in regenerative medicine for PD. Particularly, recent reports indicate that appropriate levels of Wnt signaling are essential to improve the quantity and quality of stem cell- or reprogrammed cell-derived mDA neurons to be used in drug discovery and cell replacement therapy for PD.
    Journal of Molecular Cell Biology 01/2014; · 7.31 Impact Factor


Available from
Sep 23, 2014