Analysis of a Charge Cluster Mutation of Herpes Simplex Virus Type 1 UL34 and Its Extragenic Suppressor Suggests a Novel Interaction between pUL34 and pUL31 That Is Necessary for Membrane Curvature around Capsids

Department of Microbiology, The University of Iowa, 3-432 Bowen Science Building, Iowa City, IA 52242, USA.
Journal of Virology (Impact Factor: 4.44). 04/2010; 84(8):3921-34. DOI: 10.1128/JVI.01638-09
Source: PubMed


Interaction between pUL34 and pUL31 is essential for targeting both proteins to the inner nuclear membrane (INM). Sequences mediating the targeting interaction have been mapped by others with both proteins. We have previously reported identification of charge cluster mutants of herpes simplex virus type 1 UL34 that localize properly to the inner nuclear membrane, indicating interaction with UL31, but fail to complement a UL34 deletion. We have characterized one mutation (CL04) that alters a charge cluster near the N terminus of pUL34 and observed the following. (i) The CL04 mutant has a dominant-negative effect on pUL34 function, indicating disruption of some critical interaction. (ii) In infections with CL04 pUL34, capsids accumulate in close association with the INM, but no perinuclear enveloped viruses, cytoplasmic capsids, or virions or cell surface virions were observed, suggesting that CL04 UL34 does not support INM curvature around the capsid. (iii) Passage of UL34-null virus on a stable cell line that expresses CL04 resulted in selection of extragenic suppressor mutants that grew efficiently using the mutant pUL34. (iv) All extragenic suppressors contained an R229-->L mutation in pUL31 that was sufficient to suppress the CL04 phenotype. (v) Immunolocalization and coimmunoprecipitation experiments with truncated forms of pUL34 and pUL31 confirm that N-terminal sequences of pUL34 and a C-terminal domain of pUL31 mediate interaction but not nuclear membrane targeting. pUL34 and pUL31 may make two essential interactions-one for the targeting of the complex to the nuclear envelope and another for nuclear membrane curvature around capsids.

Download full-text


Available from: Sara J Hanson,

Click to see the full-text of:

Article: Analysis of a Charge Cluster Mutation of Herpes Simplex Virus Type 1 UL34 and Its Extragenic Suppressor Suggests a Novel Interaction between pUL34 and pUL31 That Is Necessary for Membrane Curvature around Capsids

5.39 MB

See full-text
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The alphaherpesvirus proteins UL31 and UL34 and their homologues in other herpesvirus subfamilies cooperate at the nuclear membrane in the export of nascent herpesvirus capsids. We studied the respective betaherpesvirus proteins M53 and M50 in mouse cytomegalovirus (MCMV). Recently, we established a random approach to identify dominant negative (DN) mutants of essential viral genes and isolated DN mutants of M50 (B. Rupp, Z. Ruzsics, C. Buser, B. Adler, P. Walther and U. H. Koszinowski, J. Virol 81:5508-5517). Here, we report the identification and phenotypic characterization of DN alleles of its partner, M53. While mutations in the middle of the M53 open reading frame (ORF) resulted in DN mutants inhibiting MCMV replication by approximately 100-fold, mutations at the C terminus resulted in up to 1,000,000-fold inhibition of virus production. C-terminal DN mutants affected nuclear distribution and steady-state levels of the nuclear egress complex and completely blocked export of viral capsids. In addition, they induced a marked maturation defect of viral capsids, resulting in the accumulation of nuclear capsids with aberrant morphology. This was associated with a two-thirds reduction in the total amount of unit length genomes, indicating an accessory role for M53 in DNA packaging.
    Journal of Virology 09/2010; 84(18):9035-46. DOI:10.1128/JVI.00681-10 · 4.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Herpesviruses replicate their DNA and package this DNA into capsids in the nucleus. These capsids then face substantial obstacles to their release from cells. Unlike other DNA viruses, herpesviruses do not depend on disruption of nuclear and cytoplasmic membranes for their release. Enveloped particles are formed by budding through inner nuclear membranes, and then these perinuclear enveloped particles fuse with outer nuclear membranes. Unenveloped capsids in the cytoplasm are decorated with tegument proteins and then undergo secondary envelopment by budding into trans-Golgi network membranes, producing infectious particles that are released. In this Review, we describe the remodelling of host membranes that facilitates herpesvirus egress.
    Nature Reviews Microbiology 05/2011; 9(5):382-94. DOI:10.1038/nrmicro2559 · 23.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herpes simplex virus (HSV) pUL34 plays a critical role in virus replication by mediating egress of nucleocapsids from the infected cell nucleus. We have identified a mutation in pUL34 (Y68A) that produces a major defect in virus replication and impaired nuclear egress but also profoundly inhibits cell-to-cell spread and trafficking of gE. Virion release to the extracellular medium is not affected by the Y68A mutation, indicating that the mutation specifically inhibits cell-to-cell spread. We isolated extragenic suppressors of the Y68A plaque formation defect and mapped them by a combination of high-throughput Illumina sequencing and PCR-based screening. We found that suppression is highly correlated with a nonsense mutation in the US9 gene, which plays a critical role in cell-to-cell spread of HSV-1 in neurons. The US9 mutation alone is not sufficient to suppress the Y68A spread phenotype, indicating a likely role for multiple viral factors.
    Journal of Virology 07/2011; 85(14):7203-15. DOI:10.1128/JVI.00262-11 · 4.44 Impact Factor
Show more