Article

Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response.

Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA.
The Journal of Immunology (Impact Factor: 5.36). 03/2010; 184(5):2518-27. DOI: 10.4049/jimmunol.0901022
Source: PubMed

ABSTRACT We evaluated TLR function in primary human dendritic cells (DCs) from 104 young (age 21-30 y) and older (> or =65 y) individuals. We used multicolor flow cytometry and intracellular cytokine staining of myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) and found substantial decreases in older compared with young individuals in TNF-alpha, IL-6, and/or IL-12 (p40) production in mDCs and in TNF-alpha and IFN-alpha production in pDCs in response to TLR1/2, TLR2/6, TLR3, TLR5, and TLR8 engagement in mDCs and TLR7 and TLR9 in pDCs. These differences were highly significant after adjustment for heterogeneity between young and older groups (e.g., gender, race, body mass index, number of comorbid medical conditions) using mixed-effect statistical modeling. Studies of surface and intracellular expression of TLR proteins and of TLR gene expression in purified mDCs and pDCs revealed potential contributions for both transcriptional and posttranscriptional mechanisms in these age-associated effects. Moreover, intracellular cytokine production in the absence of TLR ligand stimulation was elevated in cells from older compared with young individuals, suggesting a dysregulation of cytokine production that may limit further activation by TLR engagement. Our results provide evidence for immunosenescence in DCs; notably, defects in cytokine production were strongly associated with poor Ab response to influenza immunization, a functional consequence of impaired TLR function in the aging innate immune response.

0 Followers
 · 
159 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging leads to dysregulation of multiple components of the immune system that results in increased susceptibility to infections and poor response to vaccines in the aging population. The dysfunctions of adaptive B and T cells are well documented, but the effect of aging on innate immunity remains incompletely understood. Using a heterogeneous population of peripheral blood mononuclear cells (PBMCs), we first undertook transcriptional profiling and found that PBMCs isolated from old individuals (≥ 65 years) exhibited a delayed and altered response to stimulation with TLR4, TLR7/8, and RIG-I agonists compared to cells obtained from adults (≤ 40 years). This delayed response to innate immune agonists resulted in the reduced production of pro-inflammatory and antiviral cytokines and chemokines including TNFα, IL-6, IL-1β, IFNα, IFNγ, CCL2, and CCL7. While the major monocyte and dendritic cell subsets did not change numerically with aging, activation of specific cell types was altered. PBMCs from old subjects also had a lower frequency of CD40+ monocytes, impaired up-regulation of PD-L1 on monocytes and T cells, and increased expression of PD-L2 and B7-H4 on B cells. The defective immune response to innate agonists adversely affected adaptive immunity as TLR-stimulated PBMCs (minus CD3 T cells) from old subjects elicited significantly lower levels of adult T-cell proliferation than those from adult subjects in an allogeneic mixed lymphocyte reaction (MLR). Collectively, these age-associated changes in cytokine, chemokine and interferon production, as well as co-stimulatory protein expression could contribute to the blunted memory B- and T-cell immune responses to vaccines and infections. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
    Aging cell 02/2015; DOI:10.1111/acel.12320 · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The immune systems of men and women differ in significant ways, especially after puberty. In particular, females are generally more prone to autoimmunity, but experience lower rates of infections and chronic inflammatory disease. Sex hormones, genes encoded on the sex chromosomes, and gender-specific behaviors likely contribute to these differences. The aging process is associated with changes in the composition and function of the immune system and these changes may occur at an accelerated rate in men as compared to women. Moreover, after the age of menopause, the incidence of chronic inflammatory disease in women approaches or exceeds that observed in males. At the same time, the incidence of autoimmunity in post-menopausal women is decreased or equivalent to the rates observed in similarly-aged men. Additional studies addressing the influence of sex on the pathogenesis of chronic and autoimmune diseases in the aged are warranted. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cellular Immunology 02/2015; DOI:10.1016/j.cellimm.2015.02.002 · 1.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) are the most potent antigen-presenting cells, playing a key role in induction of both innate and adaptive immunity. Immunosenescence refers to age-associated changes in the immune system, which may be associated with susceptibility to infections and their clinical complications. The precise effects of aging on DCs in immunity to infections are not well understood. Among the common pathogenic microorganisms, the fungus Candida albicans is an important pathogen for the development of invasive infections, especially in immunocompromised individuals, as well as during aging. To make a comparative in vitro evaluation of the immunomodulatory function of DCs challenged with C. albicans, by phagocytosis of the fungal cells, and determine the involvement of TLR2 and TLR4 receptors. For this purpose, DCs were generated with the use of peripheral blood monocytes from healthy young and aged subjects. The phagocytosis of C. albicans is developed by DCs in TLR2- and TLR4-dependent way. This mechanism is not affected by aging. Given the important role of the DCs in responses against the fungus, it is evident that if changes in phagocytosis occurred with aging, impairment in the elderly could develop. However, the evidence that phagocytosis of this fungus by DCs is not impaired with aging, brings us to the question of which are the mechanisms truly associated with the prevalence of certain diseases in the elderly.
    Aging - Clinical and Experimental Research 03/2015; DOI:10.1007/s40520-015-0344-1 · 1.01 Impact Factor

Full-text (2 Sources)

Download
228 Downloads
Available from
May 28, 2014