Axonal prion protein is required for peripheral myelin maintenance.

Institute of Neuropathology, University Hospital of Zürich, Zürich, Switzerland.
Nature Neuroscience (Impact Factor: 14.98). 03/2010; 13(3):310-8. DOI: 10.1038/nn.2483
Source: PubMed

ABSTRACT The integrity of peripheral nerves relies on communication between axons and Schwann cells. The axonal signals that ensure myelin maintenance are distinct from those that direct myelination and are largely unknown. Here we show that ablation of the prion protein PrP(C) triggers a chronic demyelinating polyneuropathy (CDP) in four independently targeted mouse strains. Ablation of the neighboring Prnd locus, or inbreeding to four distinct mouse strains, did not modulate the CDP. CDP was triggered by depletion of PrP(C) specifically in neurons, but not in Schwann cells, and was suppressed by PrP(C) expression restricted to neurons but not to Schwann cells. CDP was prevented by PrP(C) variants that undergo proteolytic amino-proximal cleavage, but not by variants that are nonpermissive for cleavage, including secreted PrP(C) lacking its glycolipid membrane anchor. These results indicate that neuronal expression and regulated proteolysis of PrP(C) are essential for myelin maintenance.

Download full-text


Available from: Carsten Wessig, Jun 18, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Copper ions are indispensible to life and maintaining tight control over the homeostasis of copper ions in the body is a prerequisite to sustaining health. Aberrations in normal copper levels, both systemic as well as on a tissue or cellular scale are implicated in a wide range of diseases, such as Menkes disease, Wilson's disease, Alzheimer's disease, Parkinson's disease and transmissible spongiform encephalopathy (prion diseases). The current understanding of how copper influences these diseases is described. The field of fluorescent copper sensors, both functioning via a reaction based mechanism as well as by directly binding copper ions has known an inflation in recent years, and the importance of this field to elucidating the role of copper in cell biology is pointed out. Progress in these tightly interwoven fields has resulted in a better understanding of a number of diseases related to copper imbalances and current developments might open the path for novel and innovating therapies to address th
    Chemical Communications 01/2015; DOI:10.1039/C4CC10366A · 6.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous research on stroke and traumatic brain injury (TBI) heavily emphasized pathological alterations in neuronal cells within gray matter. However, recent studies have highlighted the equal importance of white matter integrity in long-term recovery from these conditions. Demyelination is a major component of white matter injury and is characterized by loss of the myelin sheath and oligodendrocyte cell death. Demyelination contributes significantly to long-term sensorimotor and cognitive deficits because the adult brain only has limited capacity for oligodendrocyte regeneration and axonal remyelination. In the current review, we will provide an overview of the major causes of demyelination and oligodendrocyte cell death following acute brain injuries, and discuss the crosstalk between myelin, axons, microglia, and astrocytes during the process of demyelination. Recent discoveries of molecules that regulate the processes of remyelination may provide novel therapeutic targets to restore white matter integrity and improve long-term neurological recovery in stroke or TBI patients. Copyright © 2015. Published by Elsevier Inc.
    Experimental Neurology 03/2015; DOI:10.1016/j.expneurol.2015.03.017 · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cellular prion protein (PrP(C)) comprises a natively unstructured N-terminal domain, including a metal-binding octarepeat region (OR) and a linker, followed by a C-terminal domain that misfolds to form PrP(S) (c) in Creutzfeldt-Jakob disease. PrP(C) β-endoproteolysis to the C2 fragment allows PrP(S) (c) formation, while α-endoproteolysis blocks production. To examine the OR, we used structure-directed design to make novel alleles, 'S1' and 'S3', locking this region in extended or compact conformations, respectively. S1 and S3 PrP resembled WT PrP in supporting peripheral nerve myelination. Prion-infected S1 and S3 transgenic mice both accumulated similar low levels of PrP(S) (c) and infectious prion particles, but differed in their clinical presentation. Unexpectedly, S3 PrP overproduced C2 fragment in the brain by a mechanism distinct from metal-catalysed hydrolysis reported previously. OR flexibility is concluded to impact diverse biological endpoints; it is a salient variable in infectious disease paradigms and modulates how the levels of PrP(S) (c) and infectivity can either uncouple or engage to drive the onset of clinical disease. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.
    EMBO Molecular Medicine 02/2015; 7(3). DOI:10.15252/emmm.201404588 · 8.25 Impact Factor