Horseradish peroxidase-catalyzed oxidation of chlorophyll a with hydrogen peroxide: characterization of the products and mechanism of the reaction.

Department of Chemistry, Laboratory of Organic Chemistry, A.I. Virtasen Aukio 1, University of Helsinki, Finland.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 05/2010; 1797(5):531-42. DOI:10.1016/j.bbabio.2010.01.017
Source: PubMed

ABSTRACT Horseradish peroxidase was verified to catalyze, without any phenol, the hydrogen peroxide oxidation of chlorophyll a (Chl a), solubilized with Triton X-100. The 13(2)(S) and 13(2)(R) diastereomers of 13(2)-hydroxyChl a were characterized as major oxidation products (ca. 60%) by TLC on sucrose, UV-vis, (1)H, and (13)C NMR spectra, as well as fast-atom bombardment MS. A minor amount of the 15(2)-methyl, 17(3)-phytyl ester of Mg-unstable chlorin was identified on the basis of its UV-vis spectrum and reactivity with diazomethane, which converted it to the 13(1),15(2)-dimethyl, 17(3)-phytyl ester of Mg-purpurin 7. The side products (ca. 10%) were suggested to include the 17(3)-phytyl ester of Mg-purpurin 18, which is known to form easily from the Mg-unstable chlorin. The side products also included two red components with UV-vis spectral features resembling those of pure Chl a enolate anion. Hence, the two red components were assigned to the enolate anions of Chl a and pheophytin a or, alternatively, two different complexes of the Chl a enolate ion with Triton X-100. All the above products characterized by us are included in our published free-radical allomerization mechanism of Chl a, i.e. oxidation by ground-state dioxygen. The HRP clearly accelerated the allomerization process, but it did not produce bilins, that is, open-chain tetrapyrroles, the formation of which would require oxygenolysis of the chlorin macrocycle. In this regard, our results are in discrepancy with the claim by several researchers that 'bilirubin-like compounds' are formed in the HRP-catalyzed oxidation of Chl a. Inspection of the likely reactions that occurred on the distal side of the heme in the active centre of HRP provided a reasonable explanation for the observed catalytic effect of the HRP on the allomerization of Chl. In the active centre of HRP, the imidazole nitrogen of His-42 was considered to play a crucial role in the C-13(2) deprotonation of Chl a, which resulted in the Chl a enolate ion resonance hybrid. The Chl enolate was then oxidized to the Chl 13(2)-radical while the HRP Compound I was reduced to Compound II. The same reactive Chl derivatives, i.e. the Chl enolate anion and the Chl 13(2)-radical, which are produced twice in the HRP reaction cycle, happen to be the crucial intermediates in the initial stages of the Chl allomerization mechanism.

0 0
  • [show abstract] [hide abstract]
    ABSTRACT: The oxidation of chlorophyll a (chl a) catalysed by peroxidase (POD) from mesocarp of the olive fruit (Olea europaea L., cv Hojiblanca) in the presence of H2O2 and 2,4-dichlorophenol (2,4-DCP), is characterised via the individualised quantification of the products of the enzymatic reaction using a new methodology of HPLC-UV spectrometry. This innovation has allowed the discovery that, in addition to 13(2) OH chl a and 15(1) OH lactone chl a, which are the first products of POD on chl a, the reaction process sequentially creates another series of oxidised chlorophyll derivatives which have not been previously described. Their origins have been linked to POD activity in the presence of 2,4-DCP. Likewise, a study of the effect of the concentration of the various cosubstrates on the POD reaction rate demonstrated that the correct establishment of the relative concentrations of the same ([H2O2]/[2,4-DCP]/[Chl]=1:3:0.02) is crucial to explaining inhibition effects by substrates and carrying out optimum measurements. Therefore, new essential parameters for the determination of POD activity on a chlorophyll substrate are established.
    Food Chemistry 08/2013; 139(1-4):786-95. · 3.33 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Magnetic iron oxide nanoparticles (MION) were recently found to act as a peroxidase with intrinsic advantages over natural counterparts. Their limited affinity toward catalysis substrates, however, dramatically reduces their utility. In this paper, some effective groups were screened out and conjugated on MION as substrate-specific modifications for improving MION's affinity to substrates and hence utility. Nanoparticles of four different superficial structures were synthesized and characterized by TEM, size, zeta potential and SQUID, and assayed for peroxidase activity. Glucose detection was selected as an application model system to evaluate the bonus thereof. Catalysis was found to follow Michaelis-Menten kinetics. Sulfhydryl groups incorporated on MION (SH-MION) notably improve the affinity toward a substrate (hydrogen peroxide) and so do amino groups (NH₂-MION) toward another substrate, proved by variation in the determined kinetic parameters. A synergistically positive effect was observed and an apparently elevated detection sensitivity and a significantly lowered detection limit of glucose were achieved when integrated with both sulfhydryl and amino groups (SH-NH₂-MION). Our findings suggest that substrate-specific surface modifications are a straightforward and robust strategy to improve MION peroxidase-like activity. The high activity extends magnetic nanoparticles to wide applications other than glucose detection.
    Nanotechnology 04/2011; 22(14):145704. · 3.84 Impact Factor

Full-text (2 Sources)

Available from
Nov 19, 2013