A comparison of muscle activation between a Smith machine and free weight bench press.

Exercise Physiology Laboratory, Department of Kinesiology, California State University, Fullerton, California, USA.
The Journal of Strength and Conditioning Research (Impact Factor: 1.8). 03/2010; 24(3):779-84. DOI: 10.1519/JSC.0b013e3181cc2237
Source: PubMed

ABSTRACT The bench press exercise exists in multiple forms including the machine and free weight bench press. It is not clear though how each mode differs in its effect on muscle activation. The purpose of this study was to compare muscle activation of the anterior deltoid, medial deltoid, and pectoralis major during a Smith machine and free weight bench press at lower (70% 1 repetition maximum [1RM]) and higher (90% 1RM) intensities. Normalized electromyography amplitude values were used during the concentric phase of the bench press to compare muscle activity between a free weight and Smith machine bench press. Participants were classified as either experienced or inexperienced bench pressers. Two testing sessions were used, each of which entailed either all free weight or all Smith machine testing. In each testing session, each participant's 1RM was established followed by 2 repetitions at 70% of 1RM and 2 repetitions at 90% of 1RM. Results indicated greater activation of the medial deltoid on the free weight bench press than on the Smith machine bench press. Also, there was greater muscle activation at the 90% 1RM load than at the 70% 1RM load. The results of this study suggest that strength coaches should consider choosing the free weight bench press over the Smith machine bench press because of its potential for greater upper-body muscular development.

  • [Show abstract] [Hide abstract]
    ABSTRACT: This study examined the relationship of muscle size indices of the pectoralis major muscle with bench press and bench throw performances in eighteen male collegiate athletes. The maximal cross-sectional area (MCSAMAX) and volume (MV) of the pectoralis major muscle were determined by magnetic resonance imaging. First, subjects were tested for their one-repetition maximum bench press strength (1RMBP) using a Smith machine. At a later date, subjects performed bench throws using the Smith machine with several different loads ranging from 30.0 kg to 90% of 1RMBP. Barbell positions were measured by a linear position transducer, and bench throw power was calculated using a dynamic equation. Three trials were performed for each load. In all the trials, the maximal peak power was adopted as PPBT. 1RMBP was significantly correlated with MCSAMAX. Similarly, the correlation coefficient between MV and PPBT was significant. In contrast to the y-intercept of the MV-PPBT regression line, that of the MCSAMAX-1RMBP regression line was not significantly different from 0. These results suggested that, although the dependence on pectoralis major muscle size is slightly different between bench press strength and bench throw power, the pectoralis major muscle size has a significant impact on bench press and throw performances. Greater muscle size leads to heavier body weight, which can be a negative factor in some sports. We therefore recommend that athletes and their coaches develop training programs for improving sports performance by balancing the advantage of increased muscle size and the potential disadvantage of increased body weight.
    The Journal of Strength and Conditioning Research 10/2013; · 1.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to examine the acute effect of upper body complex training on power output, as well as to determine the requisite preload intensity and intra-complex recovery interval needed to induce power output increases. Nine amateur-level combat/martial art athletes completed four distinct experimental protocols, which consisted of 5 bench press repetitions at either: 65% of one-repetition maximum (1RM) with a 4 min rest interval; 65% of 1RM with an 8 min rest; 85% of 1RM with a 4 min rest; or 85% of 1RM with an 8 min rest interval, performed on different days. Before (pre-conditioning) and after (post-conditioning) each experimental protocol, three bench press throws at 30% of 1RM were performed. Significant differences in power output pre-post conditioning were observed across all experimental protocols (F=26.489, partial eta2=0.768, p=0.001). Mean power output significantly increased when the preload stimulus of 65% 1RM was matched with 4 min of rest (p=0.001), and when the 85% 1RM preload stimulus was matched with 8 min of rest (p=0.001). Moreover, a statistically significant difference in power output was observed between the four conditioning protocols (F= 21.101, partial eta(2)=0.913, p=0.001). It was concluded that, in complex training, matching a heavy preload stimulus with a longer rest interval, and a lighter preload stimulus with a shorter rest interval is important for athletes wishing to increase their power production before training or competition.
    Journal of Human Kinetics 12/2013; 39:167-75. · 0.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective. The objective of this was to evaluate of the peak maximum strength, and EMG activation (EMG) in the muscles clavicular portion of pectoralis major (CPPM), sternal portion of pectoralis major (SPPM), and anterior deltoid (AD) in the 3 different angles of the bench press. Method. They were selected 11 male subjects (23.7 ± 3.2 years, 75.1 ± 12.6 kg, 173.7 cm, 9.8 ± 3.6 % BF), experienced in strength training (2,8 ± 1.5 years, 3.2 ± 0.2 days of the week, 70 ± 8.9 minutes by session). The subjects were submitted to the tests of voluntary contraction maximum isometrics (CVIM), in the horizontal bench press (HBP: 90º), in the inclined bench press (IBP: 45º) and declined bench press (DBP: - 30º), being the three evaluations carried out respecting 48 hours of break between the same. Results. After the evaluations we identify the following results in the CVIM (162.65 ± 18.63 Kgf HPB, 155.02 ± 11.97 Kgf IPB and 163.90 ± 15.77 Kgf DPB) and we identify that do not statistically significant between exercises. When checking the differences recorded EMG to muscle the DA, in the exercises PBI and PBH, PBI and PBD. Conclusion. The results support, that the 2 portions of the greater pectoral muscle similarly are activated in the different angles of the press of banking, and that the IBP causes a greater activation of DA.
    Revista Andaluza de Medicina del Deporte. 06/2014; 7(2).


Available from
Jun 2, 2014