Article

Modulation of angiotensin II-mediated cardiac remodeling by the MEF2A target gene Xirp2.

Department of Biology, Boston University, 24 Cummington St, Boston, MA 02215, USA.
Circulation Research (Impact Factor: 11.09). 03/2010; 106(5):952-60. DOI: 10.1161/CIRCRESAHA.109.209007
Source: PubMed

ABSTRACT The vasoactive peptide angiotensin II (Ang II) is a potent cardiotoxic hormone whose actions have been well studied, yet questions remain pertaining to the downstream factors that mediate its effects in cardiomyocytes.
The in vivo role of the myocyte enhancer factor (MEF)2A target gene Xirp2 in Ang II-mediated cardiac remodeling was investigated.
Here we demonstrate that the MEF2A target gene Xirp2 (also known as cardiomyopathy associated gene 3 [CMYA3]) is an important effector of the Ang II signaling pathway in the heart. Xirp2 belongs to the evolutionarily conserved, muscle-specific, actin-binding Xin gene family and is significantly induced in the heart in response to systemic administration of Ang II. Initially, we characterized the Xirp2 promoter and demonstrate that Ang II activates Xirp2 expression by stimulating MEF2A transcriptional activity. To further characterize the role of Xirp2 downstream of Ang II signaling we generated mice harboring a hypomorphic allele of the Xirp2 gene that resulted in a marked reduction in its expression in the heart. In the absence of Ang II, adult Xirp2 hypomorphic mice displayed cardiac hypertrophy and increased beta myosin heavy chain expression. Strikingly, Xirp2 hypomorphic mice chronically infused with Ang II exhibited altered pathological cardiac remodeling including an attenuated hypertrophic response, as well as diminished fibrosis and apoptosis.
These findings reveal a novel MEF2A-Xirp2 pathway that functions downstream of Ang II signaling to modulate its pathological effects in the heart.

1 Follower
 · 
183 Views
  • Source
    • "Among the numerous risk factors for cardiac fibrosis, the renin-angiotensin-aldosterone system (RAAS), particularly the key effector molecule angiotensin II (Ang II), is of primary importance. Elevated Ang II levels are a well-established risk factor for the development of hypertension, and Ang II is also an important proinflammatory and profibrotic factor in cardiac remodeling [3–5]. Increasing evidence has indicated that inflammation plays a key role in the process of cardiac remodeling [6]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Platelets are essential for primary hemostasis; however, platelet activation also plays an important proinflammatory role. Inflammation promotes the development of cardiac fibrosis and heart failure induced by hypertension. In this study, we aimed to determine whether inhibiting platelet activation using clopidogrel could inhibit hypertension-induced cardiac inflammation and fibrosis. Using a mouse model of angiotensin II (Ang II) infusion (1,500 ng/[kg·min] for 7 days), we determined the role of platelet activation in Ang II infusion-induced cardiac inflammation and fibrosis using a P2Y12 receptor inhibitor, clopidogrel (50 mg/[kg·day]). CD41 staining showed that platelets accumulated in Ang II-infused hearts. Clopidogrel treatment inhibited Ang II infusion-induced accumulation of α-SMA(+) myofibroblasts and cardiac fibrosis (4.17 ± 1.26 vs. 1.46 ± 0.81, p < 0.05). Infiltration of inflammatory cells, including Mac-2(+) macrophages and CD45(+)Ly6G(+) neutrophils (30.38 ± 4.12 vs. 18.7 ± 2.38, p < 0.05), into Ang II-infused hearts was also suppressed by platelet inhibition. Real-time PCR and immunohistochemical staining showed that platelet inhibition significantly decreased the expression of interleukin-1β and transforming growth factor-β. Acute injection of Ang II or PE stimulated platelet activation and platelet-leukocyte conjugation, which were abolished by clopidogrel treatment. Thus, inhibition of platelet activation by clopidogrel prevents cardiac inflammation and fibrosis in response to Ang II. Taken together, our results indicate Ang II infusion-induced hypertension stimulated platelet activation and platelet-leukocyte conjugation, which initiated inflammatory responses that contributed to cardiac fibrosis.
    Cardiovascular Drugs and Therapy 07/2013; 27(6). DOI:10.1007/s10557-013-6471-z · 2.95 Impact Factor
  • Source
    • "Xin-repeat proteins are striated muscle-specific actin-binding multi-adaptor proteins that interact with sarcomeric proteins or F-actin associated proteins and localize to the intercalated discs (ICD) of cardiomyocytes or to the myotendinous junction (MTJ) of skeletal muscle cells [5], [6], [7], [8], [9], [10], [11]. Xirp1 was found to be upregulated in mouse models of hypertension [12], [13], in other mouse models based on eccentric exercise [14], [15], in a spontaneous mouse mutant with regenerating muscle tissue [15], [16], and in the dystrophic zebrafish mutant runzel [17]. Currently, a coherent functional understanding of Xirp family proteins is lacking. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Myocellular regeneration in vertebrates involves the proliferation of activated progenitor or dedifferentiated myogenic cells that have the potential to replenish lost tissue. In comparison little is known about cellular repair mechanisms within myocellular tissue in response to small injuries caused by biomechanical or cellular stress. Using a microarray analysis for genes upregulated upon myocellular injury, we identified zebrafish Xin-actin-binding repeat-containing protein1 (Xirp1) as a marker for wounded skeletal muscle cells. By combining laser-induced micro-injury with proliferation analyses, we found that Xirp1 and Xirp2a localize to nascent myofibrils within wounded skeletal muscle cells and that the repair of injuries does not involve cell proliferation or Pax7(+) cells. Through the use of Xirp1 and Xirp2a as markers, myocellular injury can now be detected, even though functional studies indicate that these proteins are not essential in this process. Previous work in chicken has implicated Xirps in cardiac looping morphogenesis. However, we found that zebrafish cardiac morphogenesis is normal in the absence of Xirp expression, and animals deficient for cardiac Xirp expression are adult viable. Although the functional involvement of Xirps in developmental and repair processes currently remains enigmatic, our findings demonstrate that skeletal muscle harbours a rapid, cell-proliferation-independent response to injury which has now become accessible to detailed molecular and cellular characterizations.
    PLoS ONE 02/2012; 7(2):e31041. DOI:10.1371/journal.pone.0031041 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cardioprotective benefits of bradykinin are attributable to activation of its B(2) receptor (B(2)R)-mediated actions and abolished by B(2)R antagonists. The current experiments evaluated the cardioprotective potential of a potent, long-acting B(2)R-selective agonist peptide analogue of bradykinin, the compound NG291. We compared the extent of cardiac tissue damage and remodeling and expression pattern of selected genes in mice submitted to acute myocardial infarct (MI) and treated for 1 week with either NG291 [Hyp(3),Thi(5),(N)Chg(7),Thi(8)]-bradykinin or with saline delivered via osmotic minipump. Active treatment resulted in better ejection fraction (EF) 69 +/- 1% vs. 61 +/- 3.1% (P = 0.01), (vs. 85 +/- 1.3% in sham-operated controls), fractional shortening (FS) 38 +/- 4% vs. 32 +/- 8% (NS) (vs. 53 +/- 1.2 in sham-operated controls), and fewer markers of myocyte apoptosis (TUNEL-positive nuclei 4.9 +/- 1.1% vs. 9.7 +/- 0.03%, P = 0.03). Systolic blood pressure (SBP) at end point was normal at 110 +/- 4.2 in actively treated mice, but tended to be lower at 104 +/- 4.7 mm Hg in saline controls with decreased cardiac systolic capacity. Expression patterns of selected genes to factors related to tissue injury, inflammation, and metabolism (i.e., the B(1)R, B(2)R, endothelial nitric oxide synthase (eNOS), TNF-alpha, cardiomyopathy-associated 3 (Cmya3), and pyruvate dehydrogenase kinase isoenzyme 4 (PDK4)) showed that acute MI induced significant upregulation of these genes, and active treatment prevented or attenuated this upregulation, whereas the B(2)R agonist itself produced no difference in the myocardium of sham-operated mice. Treatment with a selective B(2)R agonist initiated at the time of induction of acute MI in mice had a beneficial effect on cardiac function, tissue remodeling, and inflammation-related tissue gene expression, which may explain its structural and functional benefits.
    American Journal of Hypertension 02/2010; 23(5):562-8. DOI:10.1038/ajh.2010.20 · 3.40 Impact Factor
Show more

Preview

Download
0 Downloads
Available from