Article

Computer-Aided Volumetry of Pulmonary Nodules Exhibiting Ground-Glass Opacity at MDCT

Department of Diagnostic Radiology, Kumamoto University, Japan.
American Journal of Roentgenology (Impact Factor: 2.74). 02/2010; 194(2):398-406. DOI: 10.2214/AJR.09.2583
Source: PubMed

ABSTRACT The purpose of this study was to investigate the accuracy and reproducibility of results acquired with computer-aided volumetry software during MDCT of pulmonary nodules exhibiting ground-glass opacity.
To evaluate the accuracy of computer-aided volumetry software, we performed thin-section helical CT of a chest phantom that included simulated 3-, 5-, 8-, 10-, and 12-mm-diameter ground-glass opacity nodules with attenuation of -800, -630, and -450 HU. Three radiologists measured the volume of the nodules and calculated the relative volume measurement error, which was defined as follows: (measured nodule volume minus assumed nodule volume / assumed nodule volume) x 100. Two radiologists performed two independent measurements of 59 nodules in humans. Intraobserver and interobserver agreement was evaluated with Bland-Altman methods.
The relative volume measurement error for simulated ground-glass opacity nodules measuring 3 mm ranged from 51.1% to 85.2% and for nodules measuring 5 mm or more in diameter ranged from -4.1% to 7.1%. In the clinical study, for intraobserver agreement, the 95% limits of agreement were -14.9% and -13.7% and -16.6% to 15.7% for observers A and B. For interobserver agreement, these values were -16.3% to 23.7% for nodules 8 mm in diameter or larger.
With computer-aided volumetry of ground-glass opacity nodules, the relative volume measurement error was small for nodules 5 mm in diameter or larger. Intraobserver and interobserver agreement was relatively high for nodules 8 mm in diameter or larger.

0 Bookmarks
 · 
127 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this work was to quantify the effect of surrounding density on the volumetric assessment of lung nodules in a phantom CT study. Eight synthetic multidensity nodules were manufactured by enclosing spherical cores in larger spheres of double the diameter and with a different uniform density. Different combinations of outer/inner diameters (20/10mm, 10/5mm) and densities (100HU/-630HU, 10HU/- 630HU, -630HU/100HU, -630HU/-10HU) were created. The nodules were placed within an anthropomorphic phantom and scanned with a 16-detector row CT scanner. Ten repeat scans were acquired using exposures of 20, 100, and 200mAs, slice collimations of 16x0.75mm and 16x1.5mm, and pitch of 1.2, and were reconstructed with varying slice thicknesses (three for each collimation) using two reconstruction filters (medium and standard). The volumes of the inner nodule cores were estimated from the reconstructed CT data using a matched-filter approach with templates modeling the characteristics of the multi-density objects. Volume estimation of the inner nodule was assessed using percent bias (PB) and the standard deviation of percent error (SPE). The true volumes of the inner nodules were measured using micro CT imaging. Results show PB values ranging from -12.4 to 2.3% and SPE values ranging from 1.8 to 12.8%. This study indicates that the volume of multi-density nodules can be measured with relatively small percent bias (on the order of ±12% or less) when accounting for the properties of surrounding densities. These findings can provide valuable information for understanding bias and variability in clinical measurements of nodules that also include local biological changes such as inflammation and necrosis.
    SPIE Medical Imaging; 03/2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: To retrospectively investigate the diagnostic value of pre-operative CT-features between pre/minimally invasive and invasive lesions in part-solid persistent pulmonary ground glass nodules in a Caucasian population.
    European Journal of Radiology 01/2015; DOI:10.1016/j.ejrad.2014.12.031 · 2.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Measurements of lung nodule volume with multi-detector computed tomography (MDCT) have been shown to be more accurate and precise compared to conventional lower dimensional measurements. Quantifying the size of lesions is potentially more difficult when the object-to-background contrast is low as with lesions in the liver. Physical phantom and simulation studies are often utilized to analyze the bias and variance of lesion size estimates because a ground truth or reference standard can be established. In addition, it may also be useful to derive theoretical bounds as another way of characterizing lesion sizing methods. The goal of this work was to study the performance of a MDCT system for a lesion volume estimation task with object-to-background contrast less than 50 HU, and to understand the relation among performances obtained from phantom study, simulation and theoretical analysis. We performed both phantom and simulation studies, and analyzed the bias and variance of volume measurements estimated by a matched-filter-based estimator. We further corroborated results with a theoretical analysis to estimate the achievable performance bound, which was the Cramer-Rao's lower bound (CRLB) of minimum variance for the size estimates. Results showed that estimates of non-attached solid small lesion volumes with object-to-background contrast of 31-46 HU can be accurate and precise, with less than 10.8% in percent bias and 4.8% in standard deviation of percent error (SPE), in standard dose scans. These results are consistent with theoretical (CRLB), computational (simulation) and empirical phantom bounds. The difference between the bounds is rather small (for SPE less than 1.9%) indicating that the theoretical- and simulation-based performance bounds can be good surrogates for physical phantom studies.
    Physics in Medicine and Biology 01/2015; 60(2):671-688. DOI:10.1088/0031-9155/60/2/671 · 2.92 Impact Factor