A prospective diffusion tensor imaging study in mild traumatic brain injury.

The Mind Research Network, Pete & Nancy Domenici Hall, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA.
Neurology (Impact Factor: 8.25). 02/2010; 74(8):643-50. DOI: 10.1212/WNL.0b013e3181d0ccdd
Source: PubMed

ABSTRACT Only a handful of studies have investigated the nature, functional significance, and course of white matter abnormalities associated with mild traumatic brain injury (mTBI) during the semi-acute stage of injury. The present study used diffusion tensor imaging (DTI) to investigate white matter integrity and compared the accuracy of traditional anatomic scans, neuropsychological testing, and DTI for objectively classifying mTBI patients from controls.
Twenty-two patients with semi-acute mTBI (mean = 12 days postinjury), 21 matched healthy controls, and a larger sample (n = 32) of healthy controls were studied with an extensive imaging and clinical battery. A subset of participants was examined longitudinally 3-5 months after their initial visit.
mTBI patients did not differ from controls on clinical imaging scans or neuropsychological performance, although effect sizes were consistent with literature values. In contrast, mTBI patients demonstrated significantly greater fractional anisotropy as a result of reduced radial diffusivity in the corpus callosum and several left hemisphere tracts. DTI measures were more accurate than traditional clinical measures in classifying patients from controls. Longitudinal data provided preliminary evidence of partial normalization of DTI values in several white matter tracts.
Current findings of white matter abnormalities suggest that cytotoxic edema may be present during the semi-acute phase of mild traumatic brain injury (mTBI). Initial mechanical damage to axons disrupts ionic homeostasis and the ratio of intracellular and extracellular water, primarily affecting diffusion perpendicular to axons. Diffusion tensor imaging measurement may have utility for objectively classifying mTBI, and may serve as a potential biomarker of recovery.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose To investigate the extent of bias in a clinical study involving "pothole analysis" of diffusion-tensor imaging (DTI) data used to quantify white matter lesion load in diseases with a heterogeneous spatial distribution of pathologic findings, such as mild traumatic brain injury (TBI), and create a mathematical model of the bias. Materials and Methods Use of the same reference population to define normal findings and make comparisons with a patient group introduces bias, which potentially inflates reported diagnostic performance. In this institutional review board-approved prospective observational cohort study, DTI data were obtained in 20 patients admitted to the emergency department with mild TBI and in 16 control subjects. Potholes and molehills were defined as clusters of voxels with fractional anisotropy values more than 2 standard deviations below and above the mean of the corresponding voxels in the reference population, respectively. The number and volume of potholes and molehills in the two groups were compared by using a Mann-Whitney U test. Results Standard analysis showed significantly more potholes in mild TBI than in the control group (102.5 ± 34.3 vs 50.6 ± 28.9, P < .001). Repeat analysis by using leave-one-out cross-validation decreased the apparent difference in potholes between groups (mild TBI group, 102.5 ± 34.3; control group, 93.4 ± 27.2; P = .369). It was demonstrated that even with 100 subjects, this bias can decrease the voxelwise false-positive rate by more than 30% in the control group. Conclusion The pothole approach to neuroimaging data may introduce bias, which can be minimized by independent training and test groups or cross-validation methods. This bias is sufficient to call into question the previously reported diagnostic performance of DTI for mild TBI. © RSNA, 2014 Online supplemental material is available for this article.
    Radiology 03/2014; · 6.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study is to determine if the cumulative effects of head impacts from a season of high school football produce magnetic resonance imaging (MRI) measureable changes in the brain in the absence of clinically diagnosed concussion. Players from a local high school football team were instrumented with the Head Impact Telemetry System (HITs) during all practices and games. All players received pre- and post-season MRI, including diffusion tensor imaging (DTI). Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) was also conducted. Total impacts and Risk Weighted cumulative Exposure (RWE), including linear (RWELinear), rotational (RWERotational), and combined components (RWECP) were computed from the sensor data. Fractional, linear, planar and spherical anisotropies (FA, CL, CP, CS, respectively), as well as mean diffusivity (MD), were used to determine total number of abnormal white matter voxels defined as 2 standard deviations above or below the group mean. Delta (post-pre season) ImPACT scores for each individual were computed and compared to the DTI measures using the Spearman's rank correlation coefficient. None of the players analyzed experienced clinical concussion (N = 24). Regression analysis revealed a statistically significant linear relationship between RWECP and FA. Secondary analyses demonstrated additional statistically significant linear associations between RWE (RWECP and RWELinear) and all DTI measures. There was also a strong correlation between DTI measures and change in Verbal Memory subscore of the ImPACT. We demonstrate that a single season of football can produce brain MRI changes in the absence of clinical concussion. Similar brain MRI changes have been previously associated with mild traumatic brain injury.
    Journal of neurotrauma 05/2014; · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An improved understanding and characterization of glial activation and its relationship with white matter injury will likely serve as a novel treatment target to curb post injury inflammation and promote axonal remyelination after brain trauma. Traumatic brain injury (TBI) is a significant public healthcare burden and a leading cause of death and disability in the United States. Particularly, traumatic white matter (WM) injury or traumatic axonal injury has been reported as being associated with patients' poor outcomes. However, there is very limited data reporting the importance of glial activation after TBI and its interaction with WM injury. This article presents a systematic review of traumatic WM injury and the associated glial activation, from basic science to clinical diagnosis and prognosis, from advanced neuroimaging perspective. It concludes that there is a disconnection between WM injury research and the essential role of glia which serve to restore a healthy environment for axonal regeneration following WM injury. Particularly, there is a significant lack of non-invasive means to characterize the complex pathophysiology of WM injury and glial activation in both animal models and in humans. An improved understanding and characterization of the relationship between glia and WM injury will likely serve as a novel treatment target to curb post injury inflammation and promote axonal remyelination. GLIA 2014
    Glia 05/2014; · 5.07 Impact Factor

Full-text (2 Sources)

Available from
Jun 2, 2014