Loss of let-7 binding sites resulting from truncations of the 3 ' untranslated region of HMGA2 mRNA in uterine leiomyomas

Center for Human Genetics, University of Bremen, Leobener Strasse ZHG, 28359 Bremen, Germany.
Cancer genetics and cytogenetics (Impact Factor: 1.93). 01/2010; 196(2):119-23. DOI: 10.1016/j.cancergencyto.2009.09.021
Source: PubMed

ABSTRACT A subset of uterine leiomyomas (UL) shows chromosomal rearrangements of the region 12q14 approximately q15, leading to an overexpression of the high-mobility group protein A2 gene (HMGA2). Recent studies identified microRNAs of the let-7 family as post-transcriptional regulators of HMGA2. Intragenic chromosomal breakpoints might cause truncated HMGA2 transcripts lacking part of the 3' UTR. The corresponding loss of let-7 complementary sites (LCS) located in the 3' UTR would therefore stabilize HMGA2 mRNA. The aim of this study was to check UL with rearrangements of the chromosomal region 12q14 approximately 15 for truncated HMGA2 transcripts by real-time reverse-transcription polymerase chain reaction. In 8/13 leiomyomas with aberrations of chromosomal region 12q15, the results showed the presence of the complete 3' UTR with all LCS. A differential expression with highly reduced 3' untranslated region levels was found in 5/13 myomas. In two of these, full-length transcripts were almost undetectable. Truncated transcripts were apparently predominant in roughly one-third of UL with chromosomal rearrangements affecting the HMGA2 locus, where they lead to a higher stability of its transcripts and subsequently contribute to the overexpression of the protein. The assay used is also generally suited to detect submicroscopic alterations leading to truncated transcripts of HMGA2.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recurrent chromosomal alterations are found in roughly 20% of all uterine fibroids but in the majority cytogenetic changes are lacking. Recently, mutations of the gene mediator subcomplex 12 (MED12) have been detected in a majority of fibroids but no information is available whether or not they co-occur with cytogenetic subtypes as, e.g., rearrangements of the genes encoding high mobility group AT-hook (HMGA) proteins. In a total of 80 cytogenetically characterized fibroids from 50 patients, we were not only able to confirm the frequent occurrence of MED12 mutations but also to stratify two mutually exclusive pathways of leiomyomagenesis with either rearrangements of HMGA2 reflected by clonal chromosome abnormalities affecting 12q14~15 or by mutations affecting exon 2 of MED12. On average the latter mutations were associated with a significantly smaller tumor size. However, G>A transitions of nucleotides c.130 or c.131 correlate with a significantly larger size of the fibroids compared to other MED12 mutations thus explaining the high prevalence of the former mutations among clinically detectable fibroids. Interestingly, fibroids with MED12 mutations expressed significantly higher levels of the gene encoding wingless-type MMTV integration site family, member 4 (WNT4). Based on these findings and data from the literature, we hypothesize that estrogen and the mutated MED12 cooperate in activating the Wnt pathway which in turn activates β-catenin known to cause leiomyoma-like lesions in a mouse model. The occurrence of a "fibroid-type mutation" in a rare histologic subtype of endometrial polyps suggests that this mechanism is not confined to uterine leiomyomas.
    International Journal of Cancer 10/2012; 131(7):1528-36. DOI:10.1002/ijc.27424 · 5.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND Human leiomyomata (fibroids) are benign tumors of the uterus, represent the most common neoplasms of reproductive-aged women and have a prevalence of ∼70% in the general population. This disorder conveys a significant degree of morbidity and remains the leading indication for hysterectomy in the USA. Prior investigations of aberrant microRNA (miRNA) expression in various malignancies have provided invaluable insight into the role of this class of small non-coding RNAs in tumor growth. Evidence of irregular miRNA expression in uterine fibroids has garnered recent interest for diagnostic and therapeutic applications. Since miRNA gene targets modulate several processes implicated in the genesis of uterine fibroids, more focused investigation has the potential to elucidate the functional significance of miRNA in the genesis and pathology of the disease.METHODS Comprehensive electronic searches of peer reviewed published literature in PubMed (US National Library of Medicine, National Institute of Health; were performed for content related to the biologic functions of miRNA, the roles of miRNA in human disease and studies investigating miRNA in the context of uterine leiomyomata. Herein, this article will review the current evidence supporting the use of miRNA expression profiling as an investigative tool to assess the pathobiology of uterine fibroids and will discuss potential future applications of miRNAs as biomarkers and therapeutic targets.RESULTSMounting evidence supports a functional role for miRNA as either indirect or direct regulators of gene expression which impacts the pathobiology of uterine fibroids. Specifically, miRNAs let-7, 200a, 200c, 93, 106b and 21 have been implicated in cellular proliferation, apoptosis, extracellular matrix turnover, angiogenesis and inflammation. Preliminary data provide evidence to suggest that respective in vitro miRNA expression in leiomyomata and myometrium is regulated by sex steroids.CONCLUSIONS Collectively, the identification of aberrantly expressed miRNAs in uterine leiomyomata and accumulating data derived from mining of gene target prediction models and recent functional studies support the concept that miRNAs might impact the genesis and progression of disease. However, the specific biologic functions of differential miRNA expression have yet to be confirmed in vivo. Further functional studies and developing miRNA technology may provide the basis for future applications of miRNAs in clinical medicine as biomarkers and therapeutic targets.
    Human Reproduction Update 04/2014; 20(5). DOI:10.1093/humupd/dmu017 · 8.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Uterine leiomyomas are benign tumors that originate from the myometrium. Evidence points to ovarian steroid hormones, in particular, progesterone as major promoters of leiomyoma development and growth. While progesterone action in leiomyomas involves the classical nuclear receptor effects on gene regulation, there is growing evidence that signaling pathways are directly activated by the progesterone receptor (PR) and that PR can interact with growth factor signaling systems to promote proliferation and survival of leiomyomas. Studies investigating the genomic and non-genomic actions of PR and its role in leiomyoma growth are summarized here. Studies testing various selective progesterone receptor modulators for the treatment of leiomyomas are also highlighted. An increased understanding of the mechanisms associated with progesterone-driven growth of leiomyomas is critical in order to develop more efficient and targeted therapies for this prevalent disease.
    Molecular and Cellular Endocrinology 06/2011; 358(2):223-31. DOI:10.1016/j.mce.2011.05.044 · 4.24 Impact Factor