Tumor suppressor XIAP-Associated factor 1 (XAF1) cooperates with tumor necrosis factor-related apoptosis-inducing ligand to suppress colon cancer growth and trigger tumor regression.

Department of Gastroenterology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
Cancer (Impact Factor: 5.2). 03/2010; 116(5):1252-63. DOI: 10.1002/cncr.24814
Source: PubMed

ABSTRACT XIAP-associated factor 1 (XAF1) antagonizes the anticaspase activity of XIAP (X-linked inhibitor of apoptosis) and functions as a tumor suppressor in colon cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is known as a potential anticancer agent. In this study, the synergistic effect of XAF1 and TRAIL on colon cancer growth was investigated.
Adeno-XAF1 virus was generated and purified. Cell apoptosis was detected by flow-cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. Protein expression of the different genes was determined by Western blot analysis. Tumorigenesis and tumor growth were assessed in subcutaneous nude mouse xenograft experiments.
Stable overexpression of XAF1-sensitized colon cancer cells to TRAIL-induced apoptosis significantly increased the activity of caspase 3, 7, 8, and 9; released cytochrome c; and down-regulated XIAP, survivin, and c-IAP-2. The restoration of XAF1 expression mediated by adenovirus (adeno-XAF1) directly induced apoptosis, and synergized TRAIL-induced apoptosis in colon cancer cells. Ex vivo transduction of adeno-XAF1 suppressed colon cancer formation in vivo. Furthermore, adeno-XAF1 treatment of mice significantly inhibited tumor growth, strongly enhanced TRAIL-induced apoptosis and antitumor activity in colon cancer xenograft models in vivo, and markedly prolonged the survival. Notably, the combined treatment with adeno-XAF1 and TRAIL completely eradicated the established tumors without detectable toxicity in normal tissue.
The combined restoration of XAF1 expression and TRAIL treatment may be a potent strategy for colon cancer therapy.

  • Cancer Letters - CANCER LETT. 01/2010; 1.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The apoptosis of glomerular mesangial cells (GMCs) in rat Thy-1 nephritis (Thy-1N), a model of human mesangioproliferative glomerulonephritis (MsPGN), is accompanied by sublytic C5b-9 deposition. However, the mechanism by which sublytic C5b-9 induces GMC apoptosis is unclear. In the present studies, the effect of X-linked inhibitor of apoptosis-associated factor 1 (XAF1) expression on GMC apoptosis and the role of p300 and interferon regulatory factor-1 (IRF-1) in mediating XAF1 gene activation were determined, both in the GMCs induced by sublytic C5b-9 (in vitro) and in the renal tissues of rats with Thy-1N (in vivo). The in vitro studies demonstrated that IRF-1-enhanced XAF1 gene activation and its regulation by p300-mediated IRF-1 acetylation were involved in GMC apoptosis induced by sublytic C5b-9. The element of IRF-1 binding to XAF1 promoter and two acetylated sites of IRF-1 protein were also revealed. In vivo, silence of p300, IRF-1 or XAF1 genes in the renal tissues diminished GMC apoptosis and secondary GMC proliferation as well as urinary protein secretion in Thy-1N rats. Together, these data implicate that sublytic C5b-9 induces the expression of both p300 and IRF-1, as well as p300-dependent IRF-1 acetylation that may contribute to XAF1 gene activation and subsequent GMC apoptosis in Thy-1N rats.
    Cell Death & Disease 01/2014; 5:e1176. · 6.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1), a XIAP-binding protein, is a tumor suppressor gene. XAF1 was silent or expressed lowly in most human malignant tumors. However, the role of XAF1 in hepatocellular carcinoma (HCC) remains unknown. In this study, we investigated the effect of XAF1 on tumor growth and angiogenesis in hepatocellular cancer cells. Our results showed that XAF1 expression was lower in HCC cell lines SMMC-7721, Hep G2 and BEL-7404 and liver cancer tissues than that in paired non-cancer liver tissues. Adenovirus-mediated XAF1 expression (Ad5/F35-XAF1) significantly inhibited cell proliferation and induced apoptosis in HCC cells in dose- and time- dependent manners. Infection of Ad5/F35-XAF1 induced cleavage of caspase -3, -8, -9 and PARP in HCC cells. Furthermore, Ad5/F35-XAF1 treatment significantly suppressed tumor growth in a xenograft model of liver cancer cells. Western Blot and immunohistochemistry staining showed that Ad5/F35-XAF1 treatment suppressed expression of vascular endothelial growth factor (VEGF), which is associated with tumor angiogenesis, in cancer cells and xenograft tumor tissues. Moreover, Ad5/F35-XAF1 treatment prolonged the survival of tumor-bearing mice. Our results demonstrate that XAF1 inhibits tumor growth by inducing apoptosis and inhibiting tumor angiogenesis. XAF1 may be a promising target for liver cancer treatment.
    Oncotarget 06/2014; · 6.64 Impact Factor


1 Download