Tumor suppressor XIAP-Associated factor 1 (XAF1) cooperates with tumor necrosis factor-related apoptosis-inducing ligand to suppress colon cancer growth and trigger tumor regression.

Department of Gastroenterology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
Cancer (Impact Factor: 4.9). 03/2010; 116(5):1252-63. DOI: 10.1002/cncr.24814
Source: PubMed

ABSTRACT XIAP-associated factor 1 (XAF1) antagonizes the anticaspase activity of XIAP (X-linked inhibitor of apoptosis) and functions as a tumor suppressor in colon cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is known as a potential anticancer agent. In this study, the synergistic effect of XAF1 and TRAIL on colon cancer growth was investigated.
Adeno-XAF1 virus was generated and purified. Cell apoptosis was detected by flow-cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. Protein expression of the different genes was determined by Western blot analysis. Tumorigenesis and tumor growth were assessed in subcutaneous nude mouse xenograft experiments.
Stable overexpression of XAF1-sensitized colon cancer cells to TRAIL-induced apoptosis significantly increased the activity of caspase 3, 7, 8, and 9; released cytochrome c; and down-regulated XIAP, survivin, and c-IAP-2. The restoration of XAF1 expression mediated by adenovirus (adeno-XAF1) directly induced apoptosis, and synergized TRAIL-induced apoptosis in colon cancer cells. Ex vivo transduction of adeno-XAF1 suppressed colon cancer formation in vivo. Furthermore, adeno-XAF1 treatment of mice significantly inhibited tumor growth, strongly enhanced TRAIL-induced apoptosis and antitumor activity in colon cancer xenograft models in vivo, and markedly prolonged the survival. Notably, the combined treatment with adeno-XAF1 and TRAIL completely eradicated the established tumors without detectable toxicity in normal tissue.
The combined restoration of XAF1 expression and TRAIL treatment may be a potent strategy for colon cancer therapy.

1 Follower
  • 10/2010; 1(3). DOI:10.1016/S2210-7789(10)60117-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oral squamous cell carcinoma (OSCC) cells are relatively resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis during culture. We investigated the role of a proteaosome inhibitor in the survival and apoptosis of these cells. We found that the proteasome inhibitor MG132 markedly accelerated TRAIL-mediated apoptosis in OSCC cell lines HSC-2 and HSC-3. Addition of TRAIL to MG132-treated cells resulted in Bid cleavage. Furthermore, the inhibitors of caspase-3, caspase-8 and caspase-9 reduced the accelerative effect of MG132 on TRAIL-mediated apoptosis. These results suggest that the pro-apoptotic effect of a proteasome inhibitor on TRAIL-mediated apoptosis may contribute to both extrinsic and intrinsic pathways. MG132 enhanced the expression of the TRAIL receptors DR4 and DR5, and neutralization of DR5 receptors showed a marked reduction of TRAIL-mediated apoptosis, whereas that of DR4 was a partial reduction. MG132 also markedly reduced cellular FLICE-inhibitory protein (c-FLIP), cellular inhibitor of apoptosis protein-1 (cIAP-1), X-linked IAP (XIAP) and survivin. Therefore, MG132 provides partial regulation of TRAIL-mediated apoptosis in OSCC cells via modulation of DR5, c-FLIP, cIAP-1, XIAP and survivin. The proteasome inhibitor MG132 may therefore represent a novel strategy for overcoming resistance to TRAIL-mediated apoptosis in OSCC cells.
    Oncology Reports 03/2011; 25(3):645-52. DOI:10.3892/or.2010.1127 · 2.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is designated as type II programmed cell death and may confer a tumor-suppressive function. Our previous studies have shown that XIAP-associated factor 1 (XAF1) induced apoptosis and inhibited tumor growth in gastric cancer cells. In this study, we investigated the effect of XAF1 on the induction of autophagy in gastric cancer cells. We found that adenovirus vector-mediated XAF1 (adeno-XAF1) expression markedly induced autophagy, upregulated the level of Beclin-1 and inhibited phospho-Akt and phospho-p70S6K in gastric cancer cells. The downregulation of Beclin 1 or 3-methyladenine treatment suppressed adeno-XAF1-induced autophagy, but significantly enhanced adeno-XAF1-induced apoptosis. A pan-caspase inhibitor prevented adeno-XAF1-induced apoptosis, but significantly increased adeno-XAF1-induced autophagy. Furthermore, adeno-XAF1 induced autophagy in xenograft tumor and inhibited tumor growth. Our results document that adeno-XAF1 induces autophagy through upregulation of Beclin 1 expression and inhibition of Akt/p70S6K pathway, and reveal a new mechanism of XAF1 tumor suppression.
    Cancer letters 11/2011; 310(2):170-80. DOI:10.1016/j.canlet.2011.06.037 · 5.62 Impact Factor
Show more