Myocardial autophagy variation during acute myocardial infarction in rats: the effects of carvedilol.

Department of Surgical Intensive Care Unit, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
Chinese medical journal (Impact Factor: 0.9). 10/2009; 122(19):2372-9.
Source: PubMed

ABSTRACT The loss of cardiac myocytes is one of the mechanisms involved in acute myocardial infarction (AMI)-related heart failure. Autophagy is a common biological process in eukaryote cells. The relationship between cardiac myocyte loss and autophagy after AMI is still unclear. Carvedilol, a non-selective alpha1- and beta-receptor blocker, also suppresses cardiac myocyte necrosis and apoptosis induced by ischemia. However, the association between the therapeutic effects of carvedilol and autophagy is still not well understood. The aim of the present study was to establish a rat model of AMI and observe changes in autophagy in different zones of the myocardium and the effects of carvedilol on autophagy in AMI rats.
The animals were randomly assigned to a sham group, an AMI group, a chloroquine intervention group and a carvedilol group. The AMI rat model was established by ligating the left anterior descending coronary artery. The hearts were harvested at 40 minutes, 2 hours, 24 hours and 2 weeks after ligation in the AMI group, at 40 minutes in the chloroquine intervention group and at 2 weeks in other groups. Presence of autophagic vacuoles (AV) in the myocytes was observed by electron microscopy. The expression of autophagy-, anti-apoptotic- and apoptotic-related proteins, MAPLC-3, Beclin-1, Bcl-xl and Bax, were detected by immunohistochemical staining and Western blotting.
AVs were not observed in necrotic regions of the myocardium 40 minutes after ligation of the coronary artery. A large number of AVs were found in the region bordering the infarction. Compared with the infarction region and the normal region, the formation of AV was significantly increased in the region bordering the infarction (P < 0.05). The expression of autophagy- and anti-apoptotic-related proteins was significantly increased in the region bordering the infarction. Meanwhile, the expression of apoptotic-related proteins was significantly increased in the infarction region. In the chloroquine intervention group, a large number of initiated AVs (AVis) were found in the necrotic myocardial region. At 2 weeks after AMI, AVs were frequently observed in myocardial cells in the AMI group, the carvedilol group and the sham group, and the number of AVs was significantly increased in the carvedilol group compared with both the AMI group and the sham group (P < 0.05). The expression of autophagy- and anti-apoptotic-related proteins was significantly increased in the carvedilol group compared with that in the AMI group, and the positive expression located in the infarction region and the region bordering the infarction.
AMI induces the formation of AV in the myocardium. The expression of anti-apoptosis-related proteins increases in response to upregulation of autophagy. Carvedilol increases the formation of AVs and upregulates autophagy and anti-apoptosis of the cardiac myocytes after AMI.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carvedilol, a nonselective β-adrenoreceptor antagonist, protects against myocardial injury induced by acute myocardium infarction (AMI). The mechanisms underlying the anti-fibrotic effects of carvedilol are unknown. Recent studies have revealed the critical role of microRNAs (miRNAs) in a variety of cardiovascular diseases. This study investigated whether miR-29b is involved in the cardioprotective effect of carvedilol against AMI-induced myocardial fibrosis. Male SD rats were randomized into several groups: the sham surgery control, left anterior descending (LAD) surgery-AMI model, AMI plus low-dose carvedilol treatment (1 mg/kg per day, CAR-L), AMI plus medium-dose carvedilol treatment (5 mg/kg per day, CAR-M) and AMI plus high-dose carvedilol treatment (10 mg/kg per day, CAR-H). Cardiac remodeling and impaired heart function were observed 4 weeks after LAD surgery treatment; the observed cardiac remodeling, decreased ejection fraction, and fractional shortening were rescued in the CAR-M and CAR-H groups. The upregulated expression of Col1a1, Col3a1, and α-SMA mRNA was significantly reduced in the CAR-M and CAR-H groups. Moreover, the downregulated miR-29b was elevated in the CAR-M and CAR-H groups. The in vitro study showed that Col1a1, Col3a1, and α-SMA were downregulated and miR-29b was upregulated by carvedilol in a dose-dependent manner in rat cardiac fibroblasts. Inhibition of ROS-induced Smad3 activation by carvedilol resulted in downregulation of Col1a1, Col3a1, and α-SMA and upregulation of miR-29b derived from the miR-29b-2 precursor. Enforced expression of miR-29b significantly suppressed Col1a1, Col3a1, and α-SMA expression. Taken together, we found that smad3 inactivation and miR-29b upregulation contributed to the cardioprotective activity of carvedilol against AMI-induced myocardial fibrosis.
    PLoS ONE 01/2013; 8(9):e75557. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dysglycemia (hyper- and hypoglycemia) has been associated with higher mortality among patients suffering from myocardial infarction (MI). Moreover, dysglycemia may induce cell death. Cell death (necrosis, apoptosis and autophagy) is a ubiquitous process that characterizes the course of several diseases, including MI, and occurs in diverse forms varying in mechanism, pattern and consequence. Therefore, cell death is a potential pathway through which dysglycemia affects the outcome of MI and it is essential to regulate myocardial cell death in the treatment of patients with MI caused by dysglycemia. In this review, we summarized the mechanisms of MI at the cellular level and the regulatory effects of dysglycemia on myocardial cell death. The ability to modulate myocardial cell death may be a promising target of new treatments aimed at limiting MI caused by dysglycemia. However, further research is required to elucidate the mechanisms underlying cell death regulation in MI caused by dysglycemia.
    Biomedical reports. 05/2013; 1(3):341-346.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipid droplet (LD) formation is a hallmark of cellular stress. Cells attempt to combat noxious stimuli by switching their metabolism from oxidative phosphorylation to glycolysis, sparing resources in LDs for generating cellular reducing power and for anabolic biosynthesis. Membrane phospholipids are also a source of LDs. To elucidate the formation of LDs, we exposed mice to hyperoxia, hypoxia, myocardial ischemia, and sepsis induced by cecal ligation and puncture (CLP). All the above-mentioned stressors enhanced the formation of LDs, as assessed by transmission electron microscopy, with severe mitochondrial swelling. Disruption of mitochondria by depleting mitochondrial DNA ( ρ 0 cells) significantly augmented the formation of LDs, causing transcriptional activation of fatty acid biosynthesis and metabolic reprogramming to glycolysis. Heme oxygenase (HO)-1 counteracts CLP-mediated septic shock in mouse models. In HO-1-deficient mice, LD formation was not observed upon CLP, but a concomitant decrease in "LD-decorating proteins" was observed, implying a link between LDs and cytoprotective activity. Collectively, LD biogenesis during stress can trigger adaptive LD formation, which is dependent on mitochondrial integrity and HO-1 activity; this may be a cellular survival strategy, apportioning energy-generating substrates to cellular defense.
    Oxidative Medicine and Cellular Longevity 01/2013; 2013:327167.


Available from