An alternative method for preparation of pandemic influenza strain-specific antibody for vaccine potency determination.

Division of Viral Products, Center for Biologics Evaluations and Research, Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, United States.
Vaccine (Impact Factor: 3.49). 03/2010; 28(12):2442-9. DOI: 10.1016/j.vaccine.2009.12.079
Source: PubMed

ABSTRACT The traditional assay used to measure potency of inactivated influenza vaccines is a single-radial immunodiffusion (SRID) assay that utilizes an influenza strain-specific antibody to measure the content of virus hemagglutinin (HA) in the vaccine in comparison to a homologous HA reference antigen. Since timely preparation of potency reagents by regulatory authorities is challenging and always a potential bottleneck in influenza vaccine production, it is extremely important that additional approaches for reagent development be available, particularly in the event of an emerging pandemic influenza virus. An alternative method for preparation of strain-specific antibody that can be used for SRID potency assay is described. The approach does not require the presence or purification of influenza virus, and furthermore, is not limited by the success of the traditional technique of bromelain digestion and purification of virus HA. Multiple mammalian expression vectors, including plasmid and modified vaccinia virus Ankara (MVA) vectors expressing the HAs of two H5N1 influenza viruses and the HA of the recently emerging pandemic H1N1 (2009) virus, were developed. An immunization scheme was designed for the sequential immunization of animals by direct vector injection followed by protein booster immunization using influenza HA produced in vitro from MVA vector infection of cells in culture. Each HA antibody was highly specific as shown by hemagglutination inhibition assay and the ability to serve as a capture antibody in ELISA. Importantly, each H5N1 antibody and the pandemic H1N1 (2009) antibody preparation were suitable for use in SRID assays for determining the potency of pandemic influenza virus vaccines. The results demonstrate a feasible approach for addressing one of the potential bottlenecks in inactivated pandemic influenza vaccine production and are particularly important in light of the difficulties in preparation of potency reagent antibody for pandemic H1N1 (2009) virus vaccines.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vaccination is by far the most effective way of preventing morbidity and mortality due to infection of the upper respiratory tract by influenza virus. Current vaccines require yearly vaccine updates as the influenza virus can escape vaccine-induced humoral immunity due to the antigenic variability of its surface antigens. In case of a pandemic, new vaccines become available too late with current vaccine practices. New technologies that allow faster production of vaccine seed strains in combination with alternative production platforms and vaccine formulations may shorten the time gap between emergence of a new influenza virus and a vaccine becoming available. Adjuvants may allow antigen-sparing, allowing more people to be vaccinated with current vaccine production capacity. Adjuvants and universal vaccines can target immune responses to more conserved influenza epitopes, which eventually will result in broader protection for a longer time. In addition, further immunological studies are needed to gain insights in the immune features that contribute to protection from influenza-related disease and mortality, allowing redefinition of correlates of protection beyond virus neutralization in vitro.
    Viruses 10/2014; 6(10):3809-3826. DOI:10.3390/v6103809 · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A WHO workshop organized following the 2009 H1N1 pandemic recommended development of alternative influenza vaccine potency assays as high priority that could expedite the release of vaccine lots in the face of future influenza pandemics. We have developed an antibody independent, simple, high throughput receptor-binding SPR-based potency assay, which does not require any reference antisera and could be used for rapid HA quantitation and vaccine release in pandemic scenarios. The assay utilizes synthetic glycans with sialic acid (SA) of either α-2,6 or α-2,3 linkage to galactose. Only functionally active forms of HA (trimers and oligomers) recognize the SA-glycans and are quantified in this receptor-binding SPR assay. The SA-glycan SPR assay demonstrated broad dynamic range for quantitation of HA content in influenza vaccines from different manufacturers for both seasonal (A/H1N1, A/H3N2, B lineages) and pandemic influenza (A/H5N1, A/H7N9) strains with high reproducibility and low variability across multiple assays. In addition, the SA-glycan SPR assay is indicative of active HA stability, and can accurately quantify HA content in alum and oil-in-water adjuvanted influenza vaccines. Importantly, there was a good agreement between HA content determined by the SPR-based potency assay and the traditional SRID assay.
    Vaccine 03/2014; 32(19). DOI:10.1016/j.vaccine.2014.02.049 · 3.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The proteolytic enzyme bromelain has been traditionally used to cleave the hemagglutinin (HA) protein at the C-terminus of the HA2 region to release the HA proteins from influenza virions. The bromelain cleaved HA (BHA) has been routinely used as an antigen to generate antiserum that is essential for influenza vaccine product release. The HA of the 2009 pandemic H1N1 influenza A/California/7/2009 (CA09) virus could not be cleaved efficiently by bromelain. To ensure timely delivery of BHA for antiserum production, we generated a chimeric virus that contained the HA1 region from CA09 and the HA2 region from the seasonal H1N1 A/South Dakota/6/2007 (SD07) virus that is cleavable by bromelain. The BHA from this chimeric virus was antigenically identical to CA09 and induced high levels of HA-specific antibodies and protected ferrets from wild-type H1N1 CA09 virus challenge. To determine the molecular basis of inefficient cleavage of CA09 HA by bromelain, the amino acids that differed between the HA2 of CA09 and SD07 were introduced into recombinant CA09 virus to assess their effect on bromelain cleavage. The D373N or E374G substitution in the HA2 stalk region of CA09 HA enabled efficient cleavage of CA09 HA by bromelain. Sequence analysis of the pandemic H1N1-like viruses isolated from 2010 revealed emergence of the E374K change. We found that K374 enabled the HA to be cleaved by bromelain and confirmed that the 374 residue is critical for HA bromelain cleavage.
    Vaccine 12/2011; 30(5):872-8. DOI:10.1016/j.vaccine.2011.11.101 · 3.49 Impact Factor


1 Download
Available from