Irs1 Serine 307 Promotes Insulin Sensitivity in Mice

Children's Hospital Boston, Harvard Medical School, MA 02115, USA.
Cell metabolism (Impact Factor: 16.75). 01/2010; 11(1):84-92. DOI: 10.1016/j.cmet.2009.11.003
Source: PubMed

ABSTRACT Phosphorylation of the insulin receptor substrates (Irs) on serine residues-typified by Ser307 of rodent Irs1-is thought to mediate insulin resistance. To determine whether Ser307 negatively regulates Irs1 in vivo, we generated knockin mice in which Ser307 (human Ser312) was replaced with alanine (A/A). Unexpectedly, A/A mice that were fed a high-fat diet developed more severe insulin resistance than control mice, accompanied by enhanced pancreatic compensation and impaired muscle insulin signaling. Chow-fed mice whose livers lacked Irs2 but retained a single knockin allele (A/lox::LKO2) were profoundly insulin resistant (versus +/lox::LKO2 mice), and their hepatocytes showed impaired insulin signaling ex vivo. Similarly, mutant A307 Irs1 adenovirus only partially restored the response to injected insulin in mice lacking hepatic Irs1 and Irs2. Thus, contrary to the results of cell-based experiments, Ser307 in mice is a positive regulatory site that moderates the severity of insulin resistance by maintaining proximal insulin signaling.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of c-Jun N-terminal kinase 1 (JNK1)- and inhibitor of nuclear factor kappa-B kinase 2 (IKK2)-dependent signaling plays a crucial role in the development of obesity-associated insulin and leptin resistance not only in peripheral tissues but also in the CNS. Here, we demonstrate that constitutive JNK activation in agouti-related peptide (AgRP)-expressing neurons of the hypothalamus is sufficient to induce weight gain and adiposity in mice as a consequence of hyperphagia. JNK activation increases spontaneous action potential firing of AgRP cells and causes both neuronal and systemic leptin resistance. Similarly, activation of IKK2 signaling in AgRP neurons also increases firing of these cells but fails to cause obesity and leptin resistance. In contrast to JNK activation, IKK2 activation blunts insulin signaling in AgRP neurons and impairs systemic glucose homeostasis. Collectively, these experiments reveal both overlapping and nonredundant effects of JNK- and IKK-dependent signaling in AgRP neurons, which cooperate in the manifestation of the metabolic syndrome.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulin resistance is a complex metabolic disorder that defies explanation by a single etiological pathway. Accumulation of ectopic lipid metabolites, activation of the unfolded protein response (UPR) pathway, and innate immune pathways have all been implicated in the pathogenesis of insulin resistance. However, these pathways are also closely linked to changes in fatty acid uptake, lipogenesis, and energy expenditure that can impact ectopic lipid deposition. Ultimately, these cellular changes may converge to promote the accumulation of specific lipid metabolites (diacylglycerols and/or ceramides) in liver and skeletal muscle, a common final pathway leading to impaired insulin signaling and insulin resistance.
    Cell 03/2012; 148(5):852-71. DOI:10.1016/j.cell.2012.02.017 · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rapamycin is an immunosuppressive agent used after organ transplantation, but its molecular effects on glucose metabolism needs further evaluation. We explored rapamycin effects on glucose uptake and insulin signalling proteins in adipocytes obtained via subcutaneous (n=62) and omental (n=10) fat biopsies in human donors. At therapeutic concentration (0.01 μM) rapamycin reduced basal and insulin-stimulated glucose uptake by 20-30%, after short-term (15 min) or long-term (20 h) culture of subcutaneous (n=23 and n=10) and omental adipocytes (n=6 and n=7). Rapamycin reduced PKB Ser473 and AS160 Thr642 phosphorylation, and IRS2 protein levels in subcutaneous adipocytes. Additionally, it reduced mTOR-raptor, mTOR-rictor and mTOR-Sin1 interactions, suggesting decreased mTORC1 and mTORC2 formation. Rapamycin also reduced IR Tyr1146 and IRS1 Ser307/Ser616/Ser636 phosphorylation, whereas no effects were observed on the insulin stimulated IRS1-Tyr and TSC2 Thr1462 phosphorylation. This is the first study to show that rapamycin reduces glucose uptake in human adipocytes through impaired insulin signalling and this may contribute to the development of insulin resistance associated with rapamycin therapy.
    Molecular and Cellular Endocrinology 02/2012; 355(1):96-105. DOI:10.1016/j.mce.2012.01.024 · 4.24 Impact Factor


1 Download
Available from