Article

Olfactory Dysfunction Correlates with Amyloid-beta Burden in an Alzheimer's Disease Mouse Model

Emotional Brain Institute and Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 01/2010; 30(2):505-14. DOI: 10.1523/JNEUROSCI.4622-09.2010
Source: PubMed

ABSTRACT Alzheimer's disease often results in impaired olfactory perceptual acuity-a potential biomarker of the disorder. However, the usefulness of olfactory screens to serve as informative indicators of Alzheimer's is precluded by a lack of knowledge regarding why the disease impacts olfaction. We addressed this question by assaying olfactory perception and amyloid-beta (Abeta) deposition throughout the olfactory system in mice that overexpress a mutated form of the human amyloid-beta precursor protein. Such mice displayed progressive olfactory deficits that mimic those observed clinically-some evident at 3 months of age. Also, at 3 months of age, we observed nonfibrillar Abeta deposition within the olfactory bulb-earlier than deposition within any other brain region. There was also a correlation between olfactory deficits and the spatial-temporal pattern of Abeta deposition. Therefore, nonfibrillar, versus fibrillar, Abeta-related mechanisms likely contribute to early olfactory perceptual loss in Alzheimer's disease. Furthermore, these results present the odor cross-habituation test as a powerful behavioral assay, which reflects Abeta deposition and thus may serve to monitor the efficacy of therapies aimed at reducing Abeta.

Download full-text

Full-text

Available from: Donald A Wilson, Jul 02, 2015
0 Followers
 · 
97 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In odor-cued taste avoidance (OCTA), thirsty mice, offered either an odorized nonaversive fluid (S+) or an odorized aversive fluid (S-), quickly learn to use odor to avoid drinking the S-. Acquisition of both odor detection and odor discrimination tasks is very rapid with learning evidenced in most cases by either long response times or total avoidance on the second presentation of the S- stimulus. OCTA is perhaps one of the simplest conditioning procedures for assessing olfaction in mice; it requires only a test box, drinkometer circuit, and thirsty mice accustomed to drinking in the apparatus. Its advantages over the most commonly used alternatives, habituation-dishabituation, and the mouse dig test, are discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
    Chemical Senses 03/2015; 40(4). DOI:10.1093/chemse/bjv005 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease is a neurodegenerative disorder that is the most common cause of dementia in the elderly today. One of the earliest reported signs of Alzheimer's disease is olfactory dysfunction, which may manifest in a variety of ways. The present study sought to address this issue by investigating odor coding in the anterior piriform cortex, the primary cortical region involved in higher order olfactory function, and how it relates to performance on olfactory behavioral tasks. An olfactory habituation task was performed on cohorts of transgenic and age-matched wild-type mice at 3, 6 and 12 months of age. These animals were then anesthetized and acute, single-unit electrophysiology was performed in the anterior piriform cortex. In addition, in a separate group of animals, a longitudinal odor discrimination task was conducted from 3-12 months of age. Results showed that while odor habituation was impaired at all ages, Tg2576 performed comparably to age-matched wild-type mice on the olfactory discrimination task. The behavioral data mirrored intact anterior piriform cortex single-unit odor responses and receptive fields in Tg2576, which were comparable to wild-type at all age groups. The present results suggest that odor processing in the olfactory cortex and basic odor discrimination is especially robust in the face of amyloid β precursor protein (AβPP) over-expression and advancing amyloid β (Aβ) pathology. Odor identification deficits known to emerge early in Alzheimer's disease progression, therefore, may reflect impairments in linking the odor percept to associated labels in cortical regions upstream of the primary olfactory pathway, rather than in the basic odor processing itself.
    PLoS ONE 09/2014; 9(9):e106431. DOI:10.1371/journal.pone.0106431 · 3.53 Impact Factor