Article

Revelation of p53-independent Function of MTA1 in DNA Damage Response via Modulation of the p21WAF1-Proliferating Cell Nuclear Antigen Pathway

Department of Biochemistry and Molecular Biology and Institute of Coregulator Biology, The George Washington University Medical Center, Washington, DC 20037, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 03/2010; 285(13):10044-52. DOI: 10.1074/jbc.M109.079095
Source: PubMed

ABSTRACT Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and deacetylase (NuRD) complex, is a DNA-damage response protein and regulates p53-dependent DNA repair, it remains unknown whether MTA1 also participates in p53-independent DNA damage response. Here, we provide evidence that MTA1 is a p53-independent transcriptional corepressor of p21(WAF1), and the underlying mechanism involves recruitment of MTA1-histone deacetylase 2 (HDAC2) complexes onto two selective regions of the p21(WAF1) promoter. Accordingly, MTA1 depletion, despite its effect on p53 down-regulation, superinduces p21(WAF1), increases p21(WAF1) binding to proliferating cell nuclear antigen (PCNA), and decreases the nuclear accumulation of PCNA in response to ionizing radiation. In support of a p53-independent role of MTA1 in DNA damage response, we further demonstrate that induced expression of MTA1 in p53-null cells inhibits p21(WAF1) promoter activity and p21(WAF1) binding to PCNA. Consequently, MTA1 expression in p53-null cells results in increased induction of gamma H2AX foci and DNA double strand break repair, and decreased DNA damage sensitivity following ionizing radiation treatment. These findings uncover a new target of MTA1 and the existence of an additional p53-independent role of MTA1 in DNA damage response, at least in part, by modulating the p21(WAF1)-PCNA pathway, and thus, linking two previously unconnected NuRD complex and DNA-damage response pathways.

Download full-text

Full-text

Available from: Sidney Wang Fu, May 26, 2015
0 Followers
 · 
134 Views
  • Source
    • "doi:10.1371/journal.pone.0017135.t003 data from Li et al, (2010) "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Metastasis-associated protein 1 (MTA1), a master dual co-regulatory protein is found to be an integral part of NuRD (Nucleosome Remodeling and Histone Deacetylation) complex, which has indispensable transcriptional regulatory functions via histone deacetylation and chromatin remodeling. Emerging literature establishes MTA1 to be a valid DNA-damage responsive protein with a significant role in maintaining the optimum DNA-repair activity in mammalian cells exposed to genotoxic stress. This DNA-damage responsive function of MTA1 was reported to be a P53-dependent and independent function. Here, we investigate the influence of P53 on gene regulation function of Mta1 to identify novel gene targets and functions of Mta1. Methods Gene expression analysis was performed on five different mouse embryonic fibroblasts (MEFs) samples (i) the Mta1 wild type, (ii) Mta1 knock out (iii) Mta1 knock out in which Mta1 was reintroduced (iv) P53 knock out (v) P53 knock out in which Mta1 was over expressed using Affymetrix Mouse Exon 1.0 ST arrays. Further Hierarchical Clustering, Gene Ontology analysis with GO terms satisfying corrected p-value<0.1, and the Ingenuity Pathway Analysis were performed. Finally, RT-qPCR was carried out on selective candidate genes. Significance/Conclusion This study represents a complete genome wide screen for possible target genes of a coregulator, Mta1. The comparative gene profiling of Mta1 wild type, Mta1 knockout and Mta1 re-expression in the Mta1 knockout conditions define “bona fide” Mta1 target genes. Further extensive analyses of the data highlights the influence of P53 on Mta1 gene regulation. In the presence of P53 majority of the genes regulated by Mta1 are related to inflammatory and anti-microbial responses whereas in the absence of P53 the predominant target genes are involved in cancer signaling. Thus, the presented data emphasizes the known functions of Mta1 and serves as a rich resource which could help us identify novel Mta1 functions.
    PLoS ONE 02/2011; 6(2):e17135. DOI:10.1371/journal.pone.0017135 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In eukaryotic cells, packaging of DNA into highly condensed chromatin presents a significant obstacle to DNA-based processes. Cells use two major strategies including histone modifications and ATP-dependent chromatin remodeling to alter chromatin structure that allows protein factors to gain access to nucleosomal DNA. Beyond their well-established role in transcription, histone modifications and several classes of ATP-dependent chromatin-remodeling complex have been functionally linked to efficient DNA repair. Mi-2/nucleosome remodeling and histone deacetylation (NuRD) complex uniquely possess both nucleosome remodeling and histone deacetylation activities, which play a vital role in regulating transcription. However, the role of the Mi-2/NuRD complex in DNA damage response remains largely unexplored until now. Recent findings reveal that metastasis-associated protein 1 (MTA1), an integral component of the Mi-2/NuRD complex, has successfully made inroads into DNA damage response pathway, and thus, links two previously unconnected Mi-2/NuRD complex and DNA damage response research areas. In this review, we will summarize recent progress concerning the functions of histone modifications and chromatin remodeling in DNA repair, and discuss new role of Mi-2/NuRD complex in DNA damage response.
    Cell cycle (Georgetown, Tex.) 06/2010; 9(11):2071-9. DOI:10.4161/cc.9.11.11735 · 5.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MTA1 (metastasis-associated protein 1), an integral component of the nucleosome remodeling and deacetylase complex, has recently been implicated in the ionizing radiation-induced DNA damage response. However, whether MTA1 also participates in the UV-induced DNA damage checkpoint pathway remains unknown. In response to UV radiation, ATR (ataxia teleangiectasia- and Rad3-related) is the major kinase activated that orchestrates cell cycle progression with DNA repair machinery by phosphorylating and activating a number of downstream substrates, such as Chk1 (checkpoint kinase 1) and H2AX (histone 2A variant X). Here, we report that UV radiation stabilizes MTA1 in an ATR-dependent manner and increases MTA1 binding to ATR. On the other hand, depletion of MTA1 compromises the ATR-mediated Chk1 activation following UV treatment, accompanied by a marked down-regulation of Chk1 and its interacting partner Claspin, an adaptor protein that is required for the phosphorylation and activation of Chk1 by ATR. Furthermore, MTA1 deficiency decreases the induction of phosphorylated H2AX (referred to as gamma-H2AX) and gamma-H2AX focus formation after UV treatment. Consequently, depletion of MTA1 results in a defect in the G(2)-M checkpoint and increases cellular sensitivity to UV-induced DNA damage. Thus, MTA1 is required for the activation of the ATR-Claspin-Chk1 and ATR-H2AX pathways following UV treatment, and the noted abrogation of the DNA damage checkpoint in the MTA1-depleted cells may be, at least in part, a consequence of dysregulation of the expression of these two pathways. These findings suggest that, in addition to its role in the repair of double strand breaks caused by ionizing radiation, MTA1 also participates in the UV-induced ATR-mediated DNA damage checkpoint pathway.
    Journal of Biological Chemistry 06/2010; 285(26):19802-12. DOI:10.1074/jbc.M109.085258 · 4.60 Impact Factor
Show more