Article

Hepatitis C virus nonstructural protein 4B: A journey into unexplored territory

Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.
Reviews in Medical Virology (Impact Factor: 5.76). 03/2010; 20(2):117-29. DOI: 10.1002/rmv.640
Source: PubMed

ABSTRACT Hepatitis C virus (HCV) is a positive-strand RNA virus that replicates its genome in a membrane-associated replication complex. Nonstructural protein 4B (NS4B) induces the specific membrane alteration, designated as membranous web (MW), that harbours this complex. HCV NS4B is an integral membrane protein predicted to comprise four transmembrane segments in its central part. The N-terminal part comprises two amphipathic alpha-helices of which the second has the potential to traverse the membrane bilayer, likely upon oligomerisation. The C-terminal part comprises a predicted highly conserved alpha-helix, a membrane-associated amphipathic alpha-helix and two reported palmitoylation sites. NS4B interacts with other viral nonstructural proteins and has been reported to bind viral RNA. In addition, it was found to harbour an NTPase activity. Finally, NS4B has recently been found to have a role in viral assembly. Much work needs to be done with respect to further dissecting these multiple functions as well as providing a refined membrane topology and complete structure of NS4B. Progress in this direction should yield important insights into the functional architecture of the HCV replication complex and may reveal new opportunities for antiviral intervention against a leading cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma worldwide.

Download full-text

Full-text

Available from: Francois Penin, Aug 25, 2014
0 Followers
 · 
115 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Agnoprotein is one of the key regulatory proteins of polyomaviruses, including JCV, BKV and SV40 and is required for a productive viral life cycle. We have recently reported that agnoprotein forms stable dimer/oligomers mediated by a predicted amphipathic α-helix, spanning amino acids (aa), 17 to 42. Deletion of the α-helix renders a replication incompetent virus. Here, we have further characterized this region by a systematic deletion and substitution mutagenesis and demonstrated that a Leu/Ile/Phe-rich domain, (spanning aa 28-39) within α-helix is indispensable for agnoprotein structure and function. Deletion of aa 30-37 severely affects the dimer/oligomer formation and stable expression of the protein. Mutagenesis data also indicate that the residues, 34-36, may be involved in regulation of the splicing events of JCV transcripts. Collectively, these data suggest that the Leu/Ile/Phe-rich domain plays critical roles in agnoprotein function and thus represents a potential target for developing novel therapeutics against JCV infections.
    Virology 06/2013; 443(1). DOI:10.1016/j.virol.2013.05.003 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Positive-strand RNA viruses require host intracellular membranes for replicating their genomic RNAs. In this study, we determined the domains and critical amino acids in p27 of Red clover necrotic mosaic virus (RCNMV) required for its association with and targeting of ER membranes in Nicotiana benthamiana plants using a C-terminally GFP-fused and biologically functional p27. Confocal microscopy and membrane-flotation assays using an Agrobacterium-mediated expression system showed that a stretch of 20 amino acids in the N-terminal region of p27 is essential for the association of p27 with membranes. We identified the amino acids in this domain required for the association of p27 with membranes using alanine-scanning mutagenesis. We also found that this domain contains amino acids not critical for the membrane association but required for the formation of viral RNA replication complexes and negative-strand RNA synthesis. Our results extend our understanding of the multifunctional role of p27 in RCNMV replication.
    Virology 08/2012; 433(1):131-41. DOI:10.1016/j.virol.2012.07.017 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) is an important human pathogen infecting more than 170 million people worldwide with approximately three million new cases each year. HCV depends heavily on interactions between viral proteins and host factors for its survival and propagation. Among HCV viral proteins, the HCV non-structural protein 4B (NS4B) has been shown to mediate virus-host interactions that are essential for HCV replication and pathogenesis and emerged as the target for anti-HCV therapy. Here, we reviewed recent knowledge about the NS4B interaction networks with host factors and its possible regulatory mechanisms, which will both advance our understanding of the role of NS4B in HCV life cycle and illuminate potential viral and host therapeutic targets.
    Cellular Microbiology 02/2012; 14(7):994-1002. DOI:10.1111/j.1462-5822.2012.01773.x · 4.82 Impact Factor