Article

Human embryonic stem cell-derived vascular progenitor cells capable of endothelial and smooth muscle cell function.

Stem Cell Institute and Department of Medicine, University of Minnesota, Minneapolis, Minn. 55455, USA.
Experimental hematology (Impact Factor: 3.11). 03/2010; 38(3):246-257.e1. DOI: 10.1016/j.exphem.2010.01.001
Source: PubMed

ABSTRACT Previous studies have demonstrated development of endothelial cells (ECs) and smooth muscle cells (SMCs) as separate cell lineages derived from human embryonic stem cells (hESCs). We demonstrate CD34(+) cells isolated from differentiated hESCs function as vascular progenitor cells capable of producing both ECs and SMCs. These studies better define the developmental origin and reveal the relationship between these two cell types, as well as provide a more complete biological characterization.
hESCs are cocultured on M2-10B4 stromal cells or Wnt1-expressing M2-10B4 for 13 to 15 days to generate a CD34(+) cell population. These cells are isolated using a magnetic antibody separation kit and cultured on fibronectin-coated dishes in EC medium. To induce SMC differentiation, culture medium is changed and a morphological and phenotypic change occurs within 24 to 48 hours.
CD34(+) vascular progenitor cells give rise to ECs and SMCs. The two populations express respective cell-specific transcripts and proteins, exhibit intracellular calcium in response to various agonists, and form robust tube-like structures when cocultured in Matrigel. Human umbilical vein endothelial cells cultured under SMC conditions do not exhibit a change in phenotype or genotype. Wnt1-overexpressing stromal cells produced an increased number of progenitor cells.
The ability to generate large numbers of ECs and SMCs from a single vascular progenitor cell population is promising for therapeutic use to treat a variety of diseased and ischemic conditions. The stepwise differentiation outlined here is an efficient, reproducible method with potential for large-scale cultures suitable for clinical applications.

0 Bookmarks
 · 
203 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiogenesis is one of the earliest and most important steps during human development and is orchestrated by discrete families of heart progenitors, which build distinct regions of the fetal heart. For the past decade, a lineage map for the distinct subsets of progenitors that generate the embryonic mammalian heart has begun to lay a foundation for the development of new strategies for rebuilding the adult heart after injury, an unmet clinical need for the vast majority of patients with end-stage heart failure who are not heart transplant recipients. The studies also have implications for the root causes of congenital heart disease, which affects 1 in 50 live births, the most prevalent malformations in children. Although much of this insight has been generated in murine models, it is becoming increasingly clear that there can be important divergence with principles and pathways for human cardiogenesis, as well as for regenerative pathways. The development of human stem cell models, coupled with recent advances in genome editing with RNA-guided endonucleases, offer a new approach for the primary study of human cardiogenesis. In addition, application of the technology to the in vivo setting in large animal models, including nonhuman primates, has opened the door to genome-edited large animal models of adult and congenital heart disease, as well as a detailed mechanistic dissection of the more diverse and complex set of progenitor families and pathways, which guide human cardiogenesis. Implications of this new technology for a new generation of human-based, genetically tractable systems are discussed, along with potential therapeutic applications.
    Cold Spring Harbor Perspectives in Medicine 09/2014; 6(10). DOI:10.1101/cshperspect.a013920 · 7.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reactive oxygen species (ROS) are involved in a wide range of cellular processes. However, few studies have examined the generation and function of ROS in human embryonic vascular development. In this study, the sources of ROS and their roles in the vascular differentiation of human embryonic stem cells (hESCs) were investigated.Methods and ResultsDuring vascular differentiation of hESCs, CD34(+) cells had quiescence-related gene expression profiles and a large fraction of these cells were in G0 phase. In addition, levels of ROS, which were primarily generated through NOX4, were substantially higher in hESC-derived CD34(+) cells than in hESC-derived CD34(-) cells. To determine whether excess levels of ROS induce quiescence of hESC-derived CD34(+) cells, ROS levels were moderately reduced using selenium to enhance antioxidant activities of thioredoxin reductase and glutathione peroxidase. In comparison to untreated CD34(+) cells, selenium-treated CD34(+) cells exhibited changes in gene expression that favored cell cycle progression, and had a greater proliferation and a smaller fraction of cells in G0 phase. Thus, selenium treatment increased the number of hESC-derived CD34(+) cells, thereby enhancing the efficiency with which hESCs differentiated into vascular endothelial and smooth muscle cells. This study reveals NOX4 produces ROS in CD34(+) cells during vascular differentiation of hESCs, and shows that modulation of ROS levels using antioxidants such as selenium may be a novel approach to increase the vascular differentiation efficiency of hESCs.
    Cardiovascular Research 04/2014; DOI:10.1093/cvr/cvu106 · 5.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human induced pluripotent stem cells (hiPSCs) hold promise for myocardial repair following injury, but preclinical studies in large animal models are required to determine optimal cell preparation and delivery strategies to maximize functional benefits and to evaluate safety. Here, we utilized a porcine model of acute myocardial infarction (MI) to investigate the functional impact of intramyocardial transplantation of hiPSC-derived cardiomyocytes, endothelial cells, and smooth muscle cells, in combination with a 3D fibrin patch loaded with insulin growth factor (IGF)-encapsulated microspheres. hiPSC-derived cardiomyocytes integrated into host myocardium and generated organized sarcomeric structures, and endothelial and smooth muscle cells contributed to host vasculature. Trilineage cell transplantation significantly improved left ventricular function, myocardial metabolism, and arteriole density, while reducing infarct size, ventricular wall stress, and apoptosis without inducing ventricular arrhythmias. These findings in a large animal MI model highlight the potential of utilizing hiPSC-derived cells for cardiac repair. Copyright © 2014 Elsevier Inc. All rights reserved.
    Cell Stem Cell 12/2014; 15(6):750-61. DOI:10.1016/j.stem.2014.11.009 · 22.15 Impact Factor

Full-text (2 Sources)

Download
13 Downloads
Available from
Oct 13, 2014